我试图写一个c++程序,从用户获取以下输入来构造矩形(2和5之间):高度,宽度,x-pos, y-pos。所有这些矩形都平行于x轴和y轴,也就是说它们所有边的斜率都是0或无穷大。

我试图实现这个问题中提到的东西,但我没有太多的运气。

我目前的实现如下:

// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2

// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2]; 
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];

int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;  

然而,我不太确定(a)我是否已经正确地实现了我链接的算法,或者如果我确实如何解释这一点?

有什么建议吗?


当前回答

更容易检查一个矩形是否完全在另一个矩形之外,如果它是其中之一

在左边……

(r1.x + r1.width < r2.x)

或者在右边…

(r1.x > r2.x + r2.width)

或者在上面…

(r1.y + r1.height < r2.y)

或者在底部…

(r1.y > r2.y + r2.height)

对于第二个矩形,它不可能与它碰撞。因此,要有一个返回布尔值的函数,表示矩形是否碰撞,我们只需通过逻辑or组合这些条件,并对结果求反:

function checkOverlap(r1, r2) : Boolean
{ 
    return !(r1.x + r1.width < r2.x || r1.y + r1.height < r2.y || r1.x > r2.x + r2.width || r1.y > r2.y + r2.height);
}

如果只在触摸时得到阳性结果,我们可以通过“<=”和“>=”来更改“<”和“>”。

其他回答

如果矩形重叠,那么重叠面积将大于零。现在让我们求出重叠区域:

如果它们重叠,那么overlap-rect的左边缘将是max(r1。X1, r2.x1)和右边将是min(r1。x2, r2.x2)。所以重叠的长度是min(r1)X2 r2 X2 - max(r1。x1, r2.x1)

所以面积是:

area = (max(r1.x1, r2.x1) - min(r1.x2, r2.x2)) * (max(r1.y1, r2.y1) - min(r1.y2, r2.y2))

如果area = 0,则它们不重叠。

很简单,不是吗?

A和B是两个矩形。C是它们的覆盖矩形。

four points of A be (xAleft,yAtop),(xAleft,yAbottom),(xAright,yAtop),(xAright,yAbottom)
four points of A be (xBleft,yBtop),(xBleft,yBbottom),(xBright,yBtop),(xBright,yBbottom)

A.width = abs(xAleft-xAright);
A.height = abs(yAleft-yAright);
B.width = abs(xBleft-xBright);
B.height = abs(yBleft-yBright);

C.width = max(xAleft,xAright,xBleft,xBright)-min(xAleft,xAright,xBleft,xBright);
C.height = max(yAtop,yAbottom,yBtop,yBbottom)-min(yAtop,yAbottom,yBtop,yBbottom);

A and B does not overlap if
(C.width >= A.width + B.width )
OR
(C.height >= A.height + B.height) 

它考虑到所有可能的情况。

if (RectA.Left < RectB.Right && RectA.Right > RectB.Left &&
     RectA.Top > RectB.Bottom && RectA.Bottom < RectB.Top ) 

或者用笛卡尔坐标

(X1是左坐标,X2是右坐标,从左到右递增,Y1是上坐标,Y2是下坐标,从下到上递增——如果这不是你的坐标系统(例如,大多数计算机的Y方向是相反的),交换下面的比较)……

if (RectA.X1 < RectB.X2 && RectA.X2 > RectB.X1 &&
    RectA.Y1 > RectB.Y2 && RectA.Y2 < RectB.Y1) 

假设你有矩形A和矩形B。 反证法是证明。四个条件中的任何一个都保证不存在重叠:

Cond1。如果A的左边在B的右边的右边, -那么A完全在B的右边 Cond2。如果A的右边在B的左边的左边, -那么A完全在B的左边 Cond3。如果A的上边在B的下边之下, -那么A完全低于B Cond4。如果A的下边在B的上边上面, -那么A完全高于B

不重叠的条件是

NON-Overlap => Cond1 Or Cond2 Or Cond3 Or Cond4

因此,重叠的充分条件是相反的。

Overlap => NOT (Cond1 Or Cond2 Or Cond3 Or Cond4)

德摩根定律说 不是(A或B或C或D)和不是A不是B不是C不是D是一样的 所以利用德·摩根,我们有

Not Cond1 And Not Cond2 And Not Cond3 And Not Cond4

这相当于:

A的左边到B的右边的左边,[RectA。左< RectB。正确的), A的右边到B的左边的右边,[RectA。对,>,RectB。左), A的顶部高于B的底部。Top > RectB。底), A的底部在B的顶部以下。底部< RectB。前)

Note 1: It is fairly obvious this same principle can be extended to any number of dimensions. Note 2: It should also be fairly obvious to count overlaps of just one pixel, change the < and/or the > on that boundary to a <= or a >=. Note 3: This answer, when utilizing Cartesian coordinates (X, Y) is based on standard algebraic Cartesian coordinates (x increases left to right, and Y increases bottom to top). Obviously, where a computer system might mechanize screen coordinates differently, (e.g., increasing Y from top to bottom, or X From right to left), the syntax will need to be adjusted accordingly/

不要认为坐标表示像素的位置。把它们想象成像素之间。这样,2x2矩形的面积应该是4,而不是9。

bool bOverlap = !((A.Left >= B.Right || B.Left >= A.Right)
               && (A.Bottom >= B.Top || B.Bottom >= A.Top));

我有一个很简单的解决办法

设x1, y1x2,y2,l1,b1,l2分别为它们的坐标和长、宽

考虑条件((x2 现在,这两个矩形重叠的唯一方式是,如果点(x1,y1)的对角线在另一个矩形内或者类似地,点(x2,y2)的对角线在另一个矩形内。这正是上面的条件所暗示的。