我试图写一个c++程序,从用户获取以下输入来构造矩形(2和5之间):高度,宽度,x-pos, y-pos。所有这些矩形都平行于x轴和y轴,也就是说它们所有边的斜率都是0或无穷大。
我试图实现这个问题中提到的东西,但我没有太多的运气。
我目前的实现如下:
// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2
// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2];
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];
int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;
然而,我不太确定(a)我是否已经正确地实现了我链接的算法,或者如果我确实如何解释这一点?
有什么建议吗?
struct Rect
{
Rect(int x1, int x2, int y1, int y2)
: x1(x1), x2(x2), y1(y1), y2(y2)
{
assert(x1 < x2);
assert(y1 < y2);
}
int x1, x2, y1, y2;
};
//some area of the r1 overlaps r2
bool overlap(const Rect &r1, const Rect &r2)
{
return r1.x1 < r2.x2 && r2.x1 < r1.x2 &&
r1.y1 < r2.y2 && r2.x1 < r1.y2;
}
//either the rectangles overlap or the edges touch
bool touch(const Rect &r1, const Rect &r2)
{
return r1.x1 <= r2.x2 && r2.x1 <= r1.x2 &&
r1.y1 <= r2.y2 && r2.x1 <= r1.y2;
}
struct Rect
{
Rect(int x1, int x2, int y1, int y2)
: x1(x1), x2(x2), y1(y1), y2(y2)
{
assert(x1 < x2);
assert(y1 < y2);
}
int x1, x2, y1, y2;
};
bool
overlap(const Rect &r1, const Rect &r2)
{
// The rectangles don't overlap if
// one rectangle's minimum in some dimension
// is greater than the other's maximum in
// that dimension.
bool noOverlap = r1.x1 > r2.x2 ||
r2.x1 > r1.x2 ||
r1.y1 > r2.y2 ||
r2.y1 > r1.y2;
return !noOverlap;
}
这是来自《Java编程入门-综合版》中的练习3.28。该代码测试两个矩形是否缩进,一个矩形是否在另一个矩形内,一个矩形是否在另一个矩形外。如果这些条件都不满足,则两者重叠。
**3.28(几何:两个矩形)编写一个程序,提示用户进入
中心x, y坐标,宽度和高度的两个矩形,并确定
第二个矩形是在第一个矩形的内部还是与第一个矩形重叠,如图所示
如图3.9所示。测试您的程序以覆盖所有情况。
下面是示例运行:
输入r1的中心x坐标,y坐标,宽度和高度:2.5 4 2.5 43
输入r2的中心x坐标,y坐标,宽度和高度:1.5 5 0.5 3
R2在r1里面
输入r1的中心x坐标,y坐标,宽度和高度:1 2 3 5.5
输入r2的中心x坐标,y坐标,宽度和高度:3 4 4.5 5
R2和r1重叠
输入r1的中心x坐标,y坐标,宽度和高度:1 2 3 3
输入r2的中心x坐标,y坐标,宽度和高度:40 45 3 2
R2不与r1重叠
import java.util.Scanner;
public class ProgrammingEx3_28 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out
.print("Enter r1's center x-, y-coordinates, width, and height:");
double x1 = input.nextDouble();
double y1 = input.nextDouble();
double w1 = input.nextDouble();
double h1 = input.nextDouble();
w1 = w1 / 2;
h1 = h1 / 2;
System.out
.print("Enter r2's center x-, y-coordinates, width, and height:");
double x2 = input.nextDouble();
double y2 = input.nextDouble();
double w2 = input.nextDouble();
double h2 = input.nextDouble();
w2 = w2 / 2;
h2 = h2 / 2;
// Calculating range of r1 and r2
double x1max = x1 + w1;
double y1max = y1 + h1;
double x1min = x1 - w1;
double y1min = y1 - h1;
double x2max = x2 + w2;
double y2max = y2 + h2;
double x2min = x2 - w2;
double y2min = y2 - h2;
if (x1max == x2max && x1min == x2min && y1max == y2max
&& y1min == y2min) {
// Check if the two are identicle
System.out.print("r1 and r2 are indentical");
} else if (x1max <= x2max && x1min >= x2min && y1max <= y2max
&& y1min >= y2min) {
// Check if r1 is in r2
System.out.print("r1 is inside r2");
} else if (x2max <= x1max && x2min >= x1min && y2max <= y1max
&& y2min >= y1min) {
// Check if r2 is in r1
System.out.print("r2 is inside r1");
} else if (x1max < x2min || x1min > x2max || y1max < y2min
|| y2min > y1max) {
// Check if the two overlap
System.out.print("r2 does not overlaps r1");
} else {
System.out.print("r2 overlaps r1");
}
}
}
更容易检查一个矩形是否完全在另一个矩形之外,如果它是其中之一
在左边……
(r1.x + r1.width < r2.x)
或者在右边…
(r1.x > r2.x + r2.width)
或者在上面…
(r1.y + r1.height < r2.y)
或者在底部…
(r1.y > r2.y + r2.height)
对于第二个矩形,它不可能与它碰撞。因此,要有一个返回布尔值的函数,表示矩形是否碰撞,我们只需通过逻辑or组合这些条件,并对结果求反:
function checkOverlap(r1, r2) : Boolean
{
return !(r1.x + r1.width < r2.x || r1.y + r1.height < r2.y || r1.x > r2.x + r2.width || r1.y > r2.y + r2.height);
}
如果只在触摸时得到阳性结果,我们可以通过“<=”和“>=”来更改“<”和“>”。