我试图写一个c++程序,从用户获取以下输入来构造矩形(2和5之间):高度,宽度,x-pos, y-pos。所有这些矩形都平行于x轴和y轴,也就是说它们所有边的斜率都是0或无穷大。
我试图实现这个问题中提到的东西,但我没有太多的运气。
我目前的实现如下:
// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2
// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2];
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];
int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;
然而,我不太确定(a)我是否已经正确地实现了我链接的算法,或者如果我确实如何解释这一点?
有什么建议吗?
struct Rect
{
Rect(int x1, int x2, int y1, int y2)
: x1(x1), x2(x2), y1(y1), y2(y2)
{
assert(x1 < x2);
assert(y1 < y2);
}
int x1, x2, y1, y2;
};
//some area of the r1 overlaps r2
bool overlap(const Rect &r1, const Rect &r2)
{
return r1.x1 < r2.x2 && r2.x1 < r1.x2 &&
r1.y1 < r2.y2 && r2.x1 < r1.y2;
}
//either the rectangles overlap or the edges touch
bool touch(const Rect &r1, const Rect &r2)
{
return r1.x1 <= r2.x2 && r2.x1 <= r1.x2 &&
r1.y1 <= r2.y2 && r2.x1 <= r1.y2;
}
问你自己一个相反的问题:我如何确定两个矩形是否完全不相交?显然,矩形a完全在矩形B的左边不相交。如果A完全在右边。同样,如果A完全高于B或完全低于B,在任何其他情况下,A和B相交。
以下内容可能有bug,但我对算法相当有信心:
struct Rectangle { int x; int y; int width; int height; };
bool is_left_of(Rectangle const & a, Rectangle const & b) {
if (a.x + a.width <= b.x) return true;
return false;
}
bool is_right_of(Rectangle const & a, Rectangle const & b) {
return is_left_of(b, a);
}
bool not_intersect( Rectangle const & a, Rectangle const & b) {
if (is_left_of(a, b)) return true;
if (is_right_of(a, b)) return true;
// Do the same for top/bottom...
}
bool intersect(Rectangle const & a, Rectangle const & b) {
return !not_intersect(a, b);
}
更容易检查一个矩形是否完全在另一个矩形之外,如果它是其中之一
在左边……
(r1.x + r1.width < r2.x)
或者在右边…
(r1.x > r2.x + r2.width)
或者在上面…
(r1.y + r1.height < r2.y)
或者在底部…
(r1.y > r2.y + r2.height)
对于第二个矩形,它不可能与它碰撞。因此,要有一个返回布尔值的函数,表示矩形是否碰撞,我们只需通过逻辑or组合这些条件,并对结果求反:
function checkOverlap(r1, r2) : Boolean
{
return !(r1.x + r1.width < r2.x || r1.y + r1.height < r2.y || r1.x > r2.x + r2.width || r1.y > r2.y + r2.height);
}
如果只在触摸时得到阳性结果,我们可以通过“<=”和“>=”来更改“<”和“>”。
假设你已经像这样定义了矩形的位置和大小:
我的c++实现是这样的:
class Vector2D
{
public:
Vector2D(int x, int y) : x(x), y(y) {}
~Vector2D(){}
int x, y;
};
bool DoRectanglesOverlap( const Vector2D & Pos1,
const Vector2D & Size1,
const Vector2D & Pos2,
const Vector2D & Size2)
{
if ((Pos1.x < Pos2.x + Size2.x) &&
(Pos1.y < Pos2.y + Size2.y) &&
(Pos2.x < Pos1.x + Size1.x) &&
(Pos2.y < Pos1.y + Size1.y))
{
return true;
}
return false;
}
根据上图给出的函数调用示例:
DoRectanglesOverlap(Vector2D(3, 7),
Vector2D(8, 5),
Vector2D(6, 4),
Vector2D(9, 4));
if块内的比较如下所示:
if ((Pos1.x < Pos2.x + Size2.x) &&
(Pos1.y < Pos2.y + Size2.y) &&
(Pos2.x < Pos1.x + Size1.x) &&
(Pos2.y < Pos1.y + Size1.y))
↓
if (( 3 < 6 + 9 ) &&
( 7 < 4 + 4 ) &&
( 6 < 3 + 8 ) &&
( 4 < 7 + 5 ))
对于那些使用中心点和一半大小的矩形数据的人,而不是典型的x,y,w,h或x0,y0,x1,x1,下面是你可以这样做:
#include <cmath> // for fabsf(float)
struct Rectangle
{
float centerX, centerY, halfWidth, halfHeight;
};
bool isRectangleOverlapping(const Rectangle &a, const Rectangle &b)
{
return (fabsf(a.centerX - b.centerX) <= (a.halfWidth + b.halfWidth)) &&
(fabsf(a.centerY - b.centerY) <= (a.halfHeight + b.halfHeight));
}