我试图写一个c++程序,从用户获取以下输入来构造矩形(2和5之间):高度,宽度,x-pos, y-pos。所有这些矩形都平行于x轴和y轴,也就是说它们所有边的斜率都是0或无穷大。

我试图实现这个问题中提到的东西,但我没有太多的运气。

我目前的实现如下:

// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2

// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2]; 
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];

int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;  

然而,我不太确定(a)我是否已经正确地实现了我链接的算法,或者如果我确实如何解释这一点?

有什么建议吗?


当前回答

对于那些使用中心点和一半大小的矩形数据的人,而不是典型的x,y,w,h或x0,y0,x1,x1,下面是你可以这样做:

#include <cmath> // for fabsf(float)

struct Rectangle
{
    float centerX, centerY, halfWidth, halfHeight;
};

bool isRectangleOverlapping(const Rectangle &a, const Rectangle &b)
{
    return (fabsf(a.centerX - b.centerX) <= (a.halfWidth + b.halfWidth)) &&
           (fabsf(a.centerY - b.centerY) <= (a.halfHeight + b.halfHeight)); 
}

其他回答

在问题中,你链接到矩形旋转角度任意时的数学。然而,如果我理解了问题中关于角度的部分,我就会理解为所有的矩形都是相互垂直的。

一般已知重叠面积的公式为:

举个例子:

   1   2   3   4   5   6

1  +---+---+
   |       |   
2  +   A   +---+---+
   |       | B     |
3  +       +   +---+---+
   |       |   |   |   |
4  +---+---+---+---+   +
               |       |
5              +   C   +
               |       |
6              +---+---+

1)收集所有的x坐标(包括左边和右边)到一个列表中,然后排序并删除重复的

1 3 4 5 6

2)收集所有的y坐标(包括顶部和底部)到一个列表中,然后排序并删除重复的

1 2 3 4 6

3)通过唯一x坐标之间的间隙数量*唯一y坐标之间的间隙数量创建一个2D数组。

4 * 4

4)将所有矩形绘制到这个网格中,增加每个单元格的计数:

   1   3   4   5   6

1  +---+
   | 1 | 0   0   0
2  +---+---+---+
   | 1 | 1 | 1 | 0
3  +---+---+---+---+
   | 1 | 1 | 2 | 1 |
4  +---+---+---+---+
     0   0 | 1 | 1 |
6          +---+---+

5)当你绘制矩形时,很容易截取重叠部分。

假设你已经像这样定义了矩形的位置和大小:

我的c++实现是这样的:

class Vector2D
{
    public:
        Vector2D(int x, int y) : x(x), y(y) {}
        ~Vector2D(){}
        int x, y;
};

bool DoRectanglesOverlap(   const Vector2D & Pos1,
                            const Vector2D & Size1,
                            const Vector2D & Pos2,
                            const Vector2D & Size2)
{
    if ((Pos1.x < Pos2.x + Size2.x) &&
        (Pos1.y < Pos2.y + Size2.y) &&
        (Pos2.x < Pos1.x + Size1.x) &&
        (Pos2.y < Pos1.y + Size1.y))
    {
        return true;
    }
    return false;
}

根据上图给出的函数调用示例:

DoRectanglesOverlap(Vector2D(3, 7),
                    Vector2D(8, 5),
                    Vector2D(6, 4),
                    Vector2D(9, 4));

if块内的比较如下所示:

if ((Pos1.x < Pos2.x + Size2.x) &&
    (Pos1.y < Pos2.y + Size2.y) &&
    (Pos2.x < Pos1.x + Size1.x) &&
    (Pos2.y < Pos1.y + Size1.y))
                 ↓  
if ((   3   <    6   +   9    ) &&
    (   7   <    4   +   4    ) &&
    (   6   <    3   +   8    ) &&
    (   4   <    7   +   5    ))
bool Square::IsOverlappig(Square &other)
{
    bool result1 = other.x >= x && other.y >= y && other.x <= (x + width) && other.y <= (y + height); // other's top left falls within this area
    bool result2 = other.x >= x && other.y <= y && other.x <= (x + width) && (other.y + other.height) <= (y + height); // other's bottom left falls within this area
    bool result3 = other.x <= x && other.y >= y && (other.x + other.width) <= (x + width) && other.y <= (y + height); // other's top right falls within this area
    bool result4 = other.x <= x && other.y <= y && (other.x + other.width) >= x && (other.y + other.height) >= y; // other's bottom right falls within this area
    return result1 | result2 | result3 | result4;
}
if (RectA.Left < RectB.Right && RectA.Right > RectB.Left &&
     RectA.Top > RectB.Bottom && RectA.Bottom < RectB.Top ) 

或者用笛卡尔坐标

(X1是左坐标,X2是右坐标,从左到右递增,Y1是上坐标,Y2是下坐标,从下到上递增——如果这不是你的坐标系统(例如,大多数计算机的Y方向是相反的),交换下面的比较)……

if (RectA.X1 < RectB.X2 && RectA.X2 > RectB.X1 &&
    RectA.Y1 > RectB.Y2 && RectA.Y2 < RectB.Y1) 

假设你有矩形A和矩形B。 反证法是证明。四个条件中的任何一个都保证不存在重叠:

Cond1。如果A的左边在B的右边的右边, -那么A完全在B的右边 Cond2。如果A的右边在B的左边的左边, -那么A完全在B的左边 Cond3。如果A的上边在B的下边之下, -那么A完全低于B Cond4。如果A的下边在B的上边上面, -那么A完全高于B

不重叠的条件是

NON-Overlap => Cond1 Or Cond2 Or Cond3 Or Cond4

因此,重叠的充分条件是相反的。

Overlap => NOT (Cond1 Or Cond2 Or Cond3 Or Cond4)

德摩根定律说 不是(A或B或C或D)和不是A不是B不是C不是D是一样的 所以利用德·摩根,我们有

Not Cond1 And Not Cond2 And Not Cond3 And Not Cond4

这相当于:

A的左边到B的右边的左边,[RectA。左< RectB。正确的), A的右边到B的左边的右边,[RectA。对,>,RectB。左), A的顶部高于B的底部。Top > RectB。底), A的底部在B的顶部以下。底部< RectB。前)

Note 1: It is fairly obvious this same principle can be extended to any number of dimensions. Note 2: It should also be fairly obvious to count overlaps of just one pixel, change the < and/or the > on that boundary to a <= or a >=. Note 3: This answer, when utilizing Cartesian coordinates (X, Y) is based on standard algebraic Cartesian coordinates (x increases left to right, and Y increases bottom to top). Obviously, where a computer system might mechanize screen coordinates differently, (e.g., increasing Y from top to bottom, or X From right to left), the syntax will need to be adjusted accordingly/

设这两个矩形是矩形A和矩形b,设它们的中心为A1和B1 (A1和B1的坐标很容易求出来),设高为Ha和Hb,宽为Wa和Wb,设dx为A1和B1之间的宽度(x), dy为A1和B1之间的高度(y)。

现在我们可以说我们可以说A和B重叠,当

if(!(dx > Wa+Wb)||!(dy > Ha+Hb)) returns true