有没有什么情况下你更喜欢O(log n)时间复杂度而不是O(1)时间复杂度?还是O(n)到O(log n)
你能举个例子吗?
有没有什么情况下你更喜欢O(log n)时间复杂度而不是O(1)时间复杂度?还是O(n)到O(log n)
你能举个例子吗?
当前回答
我很惊讶没有人提到内存绑定应用程序。
可能存在一种算法具有较少的浮点运算,这要么是因为它的复杂性(即O(1) < O(log n)),要么是因为复杂度前面的常数更小(即2n2 < 6n2)。无论如何,如果较低的FLOP算法的内存限制更大,您可能仍然更喜欢具有更多FLOP的算法。
我所说的“内存受限”是指您经常访问的数据经常超出缓存。为了获取这些数据,在对其执行操作之前,必须将内存从实际内存空间拉到缓存中。这个抓取步骤通常非常慢——比您的操作本身慢得多。
因此,如果你的算法需要更多的操作(但这些操作是在已经在缓存中的数据上执行的[因此不需要读取]),它仍然会在实际的walltime方面以更少的操作(必须在缓存外的数据上执行[因此需要读取])胜过你的算法。
其他回答
以下是我的观点:
有时,当算法在特定的硬件环境中运行时,会选择较差的复杂度算法来代替较好的算法。假设我们的O(1)算法非顺序地访问一个非常大的固定大小数组的每个元素来解决我们的问题。然后将该阵列放在机械硬盘驱动器或磁带上。
在这种情况下,O(logn)算法(假设它按顺序访问磁盘)变得更有利。
假设您正在嵌入式系统上实现一个黑名单,其中0到1,000,000之间的数字可能被列入黑名单。这就给你留下了两个选择:
使用1,000,000位的bitset 使用黑名单整数的排序数组,并使用二进制搜索来访问它们
对bitset的访问将保证常量访问。从时间复杂度来看,它是最优的。从理论和实践的角度来看(它是O(1),常量开销极低)。
不过,你可能更喜欢第二种解决方案。特别是如果您希望黑名单整数的数量非常小,因为这样内存效率更高。
即使您不为内存稀缺的嵌入式系统开发,我也可以将任意限制从1,000,000增加到1,000,000,000,000,并提出相同的论点。那么bitset将需要大约125G的内存。保证最坏情况复杂度为O(1)可能无法说服您的老板为您提供如此强大的服务器。
在这里,我强烈倾向于二叉搜索(O(log n))或二叉树(O(log n))而不是O(1)位集。在实践中,最坏情况复杂度为O(n)的哈希表可能会击败所有这些算法。
A more general question is if there are situations where one would prefer an O(f(n)) algorithm to an O(g(n)) algorithm even though g(n) << f(n) as n tends to infinity. As others have already mentioned, the answer is clearly "yes" in the case where f(n) = log(n) and g(n) = 1. It is sometimes yes even in the case that f(n) is polynomial but g(n) is exponential. A famous and important example is that of the Simplex Algorithm for solving linear programming problems. In the 1970s it was shown to be O(2^n). Thus, its worse-case behavior is infeasible. But -- its average case behavior is extremely good, even for practical problems with tens of thousands of variables and constraints. In the 1980s, polynomial time algorithms (such a Karmarkar's interior-point algorithm) for linear programming were discovered, but 30 years later the simplex algorithm still seems to be the algorithm of choice (except for certain very large problems). This is for the obvious reason that average-case behavior is often more important than worse-case behavior, but also for a more subtle reason that the simplex algorithm is in some sense more informative (e.g. sensitivity information is easier to extract).
人们已经回答了你的确切问题,所以我要回答一个稍微不同的问题,人们来这里时可能会想到这个问题。
许多“O(1)时间”算法和数据结构实际上只需要预期的O(1)时间,这意味着它们的平均运行时间是O(1),可能仅在某些假设下。
常见的例子:哈希表,“数组列表”的扩展(也就是动态大小的数组/向量)。
在这种情况下,您可能更喜欢使用保证时间绝对受对数限制的数据结构或算法,即使它们的平均性能可能更差。 一个例子可能是平衡二叉搜索树,它的运行时间平均较差,但在最坏的情况下更好。
给已经好的答案锦上添花。一个实际的例子是postgres数据库中的哈希索引和b树索引。
哈希索引形成一个哈希表索引来访问磁盘上的数据,而btree顾名思义使用的是btree数据结构。
大O时间是O(1) vs O(logN)
目前不鼓励在postgres中使用哈希索引,因为在现实生活中,特别是在数据库系统中,实现无冲突的哈希是非常困难的(可能导致O(N)最坏情况的复杂性),正因为如此,使它们具有崩溃安全性就更加困难了(在postgres中称为提前写日志- WAL)。
在这种情况下进行这种权衡,因为O(logN)对于索引来说已经足够好了,而实现O(1)非常困难,而且时间差并不重要。