有没有什么情况下你更喜欢O(log n)时间复杂度而不是O(1)时间复杂度?还是O(n)到O(log n)
你能举个例子吗?
有没有什么情况下你更喜欢O(log n)时间复杂度而不是O(1)时间复杂度?还是O(n)到O(log n)
你能举个例子吗?
当前回答
在重新设计程序时,发现一个过程用O(1)而不是O(lgN)进行了优化,但如果不是这个程序的瓶颈,就很难理解O(1) alg。这样就不用用O(1)算法了 当O(1)需要大量的内存而你无法提供时,而O(lgN)的时间可以接受。
其他回答
选择大O复杂度高的算法而不是大O复杂度低的算法的原因有很多:
most of the time, lower big-O complexity is harder to achieve and requires skilled implementation, a lot of knowledge and a lot of testing. big-O hides the details about a constant: algorithm that performs in 10^5 is better from big-O point of view than 1/10^5 * log(n) (O(1) vs O(log(n)), but for most reasonable n the first one will perform better. For example the best complexity for matrix multiplication is O(n^2.373) but the constant is so high that no (to my knowledge) computational libraries use it. big-O makes sense when you calculate over something big. If you need to sort array of three numbers, it matters really little whether you use O(n*log(n)) or O(n^2) algorithm. sometimes the advantage of the lowercase time complexity can be really negligible. For example there is a data structure tango tree which gives a O(log log N) time complexity to find an item, but there is also a binary tree which finds the same in O(log n). Even for huge numbers of n = 10^20 the difference is negligible. time complexity is not everything. Imagine an algorithm that runs in O(n^2) and requires O(n^2) memory. It might be preferable over O(n^3) time and O(1) space when the n is not really big. The problem is that you can wait for a long time, but highly doubt you can find a RAM big enough to use it with your algorithm parallelization is a good feature in our distributed world. There are algorithms that are easily parallelizable, and there are some that do not parallelize at all. Sometimes it makes sense to run an algorithm on 1000 commodity machines with a higher complexity than using one machine with a slightly better complexity. in some places (security) a complexity can be a requirement. No one wants to have a hash algorithm that can hash blazingly fast (because then other people can bruteforce you way faster) although this is not related to switch of complexity, but some of the security functions should be written in a manner to prevent timing attack. They mostly stay in the same complexity class, but are modified in a way that it always takes worse case to do something. One example is comparing that strings are equal. In most applications it makes sense to break fast if the first bytes are different, but in security you will still wait for the very end to tell the bad news. somebody patented the lower-complexity algorithm and it is more economical for a company to use higher complexity than to pay money. some algorithms adapt well to particular situations. Insertion sort, for example, has an average time-complexity of O(n^2), worse than quicksort or mergesort, but as an online algorithm it can efficiently sort a list of values as they are received (as user input) where most other algorithms can only efficiently operate on a complete list of values.
总有一个隐藏常数,在O(log n)算法中可以更低。因此,在实际生活数据中,它可以更快地工作。
还有空间问题(比如在烤面包机上运行)。
还有开发人员的时间问题——O(log n)可能更容易实现和验证1000倍。
在重新设计程序时,发现一个过程用O(1)而不是O(lgN)进行了优化,但如果不是这个程序的瓶颈,就很难理解O(1) alg。这样就不用用O(1)算法了 当O(1)需要大量的内存而你无法提供时,而O(lgN)的时间可以接受。
当n很小时,O(1)总是很慢。
给已经好的答案锦上添花。一个实际的例子是postgres数据库中的哈希索引和b树索引。
哈希索引形成一个哈希表索引来访问磁盘上的数据,而btree顾名思义使用的是btree数据结构。
大O时间是O(1) vs O(logN)
目前不鼓励在postgres中使用哈希索引,因为在现实生活中,特别是在数据库系统中,实现无冲突的哈希是非常困难的(可能导致O(N)最坏情况的复杂性),正因为如此,使它们具有崩溃安全性就更加困难了(在postgres中称为提前写日志- WAL)。
在这种情况下进行这种权衡,因为O(logN)对于索引来说已经足够好了,而实现O(1)非常困难,而且时间差并不重要。