有没有什么情况下你更喜欢O(log n)时间复杂度而不是O(1)时间复杂度?还是O(n)到O(log n)

你能举个例子吗?


当前回答

在重新设计程序时,发现一个过程用O(1)而不是O(lgN)进行了优化,但如果不是这个程序的瓶颈,就很难理解O(1) alg。这样就不用用O(1)算法了 当O(1)需要大量的内存而你无法提供时,而O(lgN)的时间可以接受。

其他回答

当n很小时,O(1)总是很慢。

在n有界且O(1)算法的常数乘子高于log(n)上的界的任意点。例如,在哈希集中存储值是O(1),但可能需要对哈希函数进行昂贵的计算。如果数据项可以简单地进行比较(相对于某些顺序),并且n的边界是这样的,log n明显小于任何一项上的哈希计算,那么存储在平衡二叉树中可能比存储在哈希集中更快。

Alistra指出了这一点,但未能提供任何例子,所以我会。

您有一个包含10,000个UPC代码的列表,用于您的商店销售的产品。10位UPC,整数价格(便士价格)和30个字符的收据描述。

O(log N)方法:你有一个排序的列表。ASCII是44字节,Unicode是84字节。或者,将UPC视为int64,将得到42和72字节。10,000条记录——在最高的情况下,您看到的存储空间略低于1mb。

O(1)方法:不存储UPC,而是将其用作数组的一个条目。在最低的情况下,您将看到近三分之一tb的存储空间。

Which approach you use depends on your hardware. On most any reasonable modern configuration you're going to use the log N approach. I can picture the second approach being the right answer if for some reason you're running in an environment where RAM is critically short but you have plenty of mass storage. A third of a terabyte on a disk is no big deal, getting your data in one probe of the disk is worth something. The simple binary approach takes 13 on average. (Note, however, that by clustering your keys you can get this down to a guaranteed 3 reads and in practice you would cache the first one.)

当O(1)中的“1”工作单元相对于O(log n)中的工作单元非常高,且期望集大小较小时。例如,如果数组中只有两到三个项,那么计算Dictionary哈希码可能比迭代数组要慢。

or

当O(1)算法中的内存或其他非时间资源需求相对于O(log n)算法非常大时。

简单地说:因为系数(与该步骤的设置、存储和执行时间相关的成本)在较小的大o问题中比在较大的大o问题中要大得多。Big-O只是算法可伸缩性的一个衡量标准。

考虑以下来自黑客词典的例子,提出了一个依赖于量子力学的多重世界解释的排序算法:

用量子过程随机排列数组, 如果数组没有排序,毁灭宇宙。 所有剩下的宇宙现在都被排序了(包括你所在的宇宙)。

(来源:http://catb.org/ esr /术语/ html / B / bogo-sort.html)

注意,这个算法的大O是O(n),它击败了迄今为止在一般项目上的任何已知排序算法。线性阶跃的系数也很低(因为它只是一个比较,而不是交换,是线性完成的)。事实上,类似的算法可以用于在多项式时间内解决NP和co-NP中的任何问题,因为每个可能的解(或没有解的可能证明)都可以使用量子过程生成,然后在多项式时间内验证。

然而,在大多数情况下,我们可能不想冒多重世界可能不正确的风险,更不用说实现步骤2的行为仍然是“留给读者的练习”。