有没有什么情况下你更喜欢O(log n)时间复杂度而不是O(1)时间复杂度?还是O(n)到O(log n)

你能举个例子吗?


当前回答

选择大O复杂度高的算法而不是大O复杂度低的算法的原因有很多:

most of the time, lower big-O complexity is harder to achieve and requires skilled implementation, a lot of knowledge and a lot of testing. big-O hides the details about a constant: algorithm that performs in 10^5 is better from big-O point of view than 1/10^5 * log(n) (O(1) vs O(log(n)), but for most reasonable n the first one will perform better. For example the best complexity for matrix multiplication is O(n^2.373) but the constant is so high that no (to my knowledge) computational libraries use it. big-O makes sense when you calculate over something big. If you need to sort array of three numbers, it matters really little whether you use O(n*log(n)) or O(n^2) algorithm. sometimes the advantage of the lowercase time complexity can be really negligible. For example there is a data structure tango tree which gives a O(log log N) time complexity to find an item, but there is also a binary tree which finds the same in O(log n). Even for huge numbers of n = 10^20 the difference is negligible. time complexity is not everything. Imagine an algorithm that runs in O(n^2) and requires O(n^2) memory. It might be preferable over O(n^3) time and O(1) space when the n is not really big. The problem is that you can wait for a long time, but highly doubt you can find a RAM big enough to use it with your algorithm parallelization is a good feature in our distributed world. There are algorithms that are easily parallelizable, and there are some that do not parallelize at all. Sometimes it makes sense to run an algorithm on 1000 commodity machines with a higher complexity than using one machine with a slightly better complexity. in some places (security) a complexity can be a requirement. No one wants to have a hash algorithm that can hash blazingly fast (because then other people can bruteforce you way faster) although this is not related to switch of complexity, but some of the security functions should be written in a manner to prevent timing attack. They mostly stay in the same complexity class, but are modified in a way that it always takes worse case to do something. One example is comparing that strings are equal. In most applications it makes sense to break fast if the first bytes are different, but in security you will still wait for the very end to tell the bad news. somebody patented the lower-complexity algorithm and it is more economical for a company to use higher complexity than to pay money. some algorithms adapt well to particular situations. Insertion sort, for example, has an average time-complexity of O(n^2), worse than quicksort or mergesort, but as an online algorithm it can efficiently sort a list of values as they are received (as user input) where most other algorithms can only efficiently operate on a complete list of values.

其他回答

我在这里的回答是,在随机矩阵的所有行的快速随机加权选择是一个例子,当m不是太大时,复杂度为O(m)的算法比复杂度为O(log(m))的算法更快。

总有一个隐藏常数,在O(log n)算法中可以更低。因此,在实际生活数据中,它可以更快地工作。

还有空间问题(比如在烤面包机上运行)。

还有开发人员的时间问题——O(log n)可能更容易实现和验证1000倍。

简单地说:因为系数(与该步骤的设置、存储和执行时间相关的成本)在较小的大o问题中比在较大的大o问题中要大得多。Big-O只是算法可伸缩性的一个衡量标准。

考虑以下来自黑客词典的例子,提出了一个依赖于量子力学的多重世界解释的排序算法:

用量子过程随机排列数组, 如果数组没有排序,毁灭宇宙。 所有剩下的宇宙现在都被排序了(包括你所在的宇宙)。

(来源:http://catb.org/ esr /术语/ html / B / bogo-sort.html)

注意,这个算法的大O是O(n),它击败了迄今为止在一般项目上的任何已知排序算法。线性阶跃的系数也很低(因为它只是一个比较,而不是交换,是线性完成的)。事实上,类似的算法可以用于在多项式时间内解决NP和co-NP中的任何问题,因为每个可能的解(或没有解的可能证明)都可以使用量子过程生成,然后在多项式时间内验证。

然而,在大多数情况下,我们可能不想冒多重世界可能不正确的风险,更不用说实现步骤2的行为仍然是“留给读者的练习”。

选择大O复杂度高的算法而不是大O复杂度低的算法的原因有很多:

most of the time, lower big-O complexity is harder to achieve and requires skilled implementation, a lot of knowledge and a lot of testing. big-O hides the details about a constant: algorithm that performs in 10^5 is better from big-O point of view than 1/10^5 * log(n) (O(1) vs O(log(n)), but for most reasonable n the first one will perform better. For example the best complexity for matrix multiplication is O(n^2.373) but the constant is so high that no (to my knowledge) computational libraries use it. big-O makes sense when you calculate over something big. If you need to sort array of three numbers, it matters really little whether you use O(n*log(n)) or O(n^2) algorithm. sometimes the advantage of the lowercase time complexity can be really negligible. For example there is a data structure tango tree which gives a O(log log N) time complexity to find an item, but there is also a binary tree which finds the same in O(log n). Even for huge numbers of n = 10^20 the difference is negligible. time complexity is not everything. Imagine an algorithm that runs in O(n^2) and requires O(n^2) memory. It might be preferable over O(n^3) time and O(1) space when the n is not really big. The problem is that you can wait for a long time, but highly doubt you can find a RAM big enough to use it with your algorithm parallelization is a good feature in our distributed world. There are algorithms that are easily parallelizable, and there are some that do not parallelize at all. Sometimes it makes sense to run an algorithm on 1000 commodity machines with a higher complexity than using one machine with a slightly better complexity. in some places (security) a complexity can be a requirement. No one wants to have a hash algorithm that can hash blazingly fast (because then other people can bruteforce you way faster) although this is not related to switch of complexity, but some of the security functions should be written in a manner to prevent timing attack. They mostly stay in the same complexity class, but are modified in a way that it always takes worse case to do something. One example is comparing that strings are equal. In most applications it makes sense to break fast if the first bytes are different, but in security you will still wait for the very end to tell the bad news. somebody patented the lower-complexity algorithm and it is more economical for a company to use higher complexity than to pay money. some algorithms adapt well to particular situations. Insertion sort, for example, has an average time-complexity of O(n^2), worse than quicksort or mergesort, but as an online algorithm it can efficiently sort a list of values as they are received (as user input) where most other algorithms can only efficiently operate on a complete list of values.

人们已经回答了你的确切问题,所以我要回答一个稍微不同的问题,人们来这里时可能会想到这个问题。

许多“O(1)时间”算法和数据结构实际上只需要预期的O(1)时间,这意味着它们的平均运行时间是O(1),可能仅在某些假设下。

常见的例子:哈希表,“数组列表”的扩展(也就是动态大小的数组/向量)。

在这种情况下,您可能更喜欢使用保证时间绝对受对数限制的数据结构或算法,即使它们的平均性能可能更差。 一个例子可能是平衡二叉搜索树,它的运行时间平均较差,但在最坏的情况下更好。