有没有什么情况下你更喜欢O(log n)时间复杂度而不是O(1)时间复杂度?还是O(n)到O(log n)

你能举个例子吗?


当前回答

当n很小时,O(1)总是很慢。

其他回答

我很惊讶没有人提到内存绑定应用程序。

可能存在一种算法具有较少的浮点运算,这要么是因为它的复杂性(即O(1) < O(log n)),要么是因为复杂度前面的常数更小(即2n2 < 6n2)。无论如何,如果较低的FLOP算法的内存限制更大,您可能仍然更喜欢具有更多FLOP的算法。

我所说的“内存受限”是指您经常访问的数据经常超出缓存。为了获取这些数据,在对其执行操作之前,必须将内存从实际内存空间拉到缓存中。这个抓取步骤通常非常慢——比您的操作本身慢得多。

因此,如果你的算法需要更多的操作(但这些操作是在已经在缓存中的数据上执行的[因此不需要读取]),它仍然会在实际的walltime方面以更少的操作(必须在缓存外的数据上执行[因此需要读取])胜过你的算法。

在关注数据安全的上下文中,如果更复杂的算法对定时攻击有更好的抵抗能力,那么更复杂的算法可能比不太复杂的算法更可取。

考虑一个红黑树。它具有O(log n)的访问、搜索、插入和删除操作。与数组相比,数组的访问权限为O(1),其余操作为O(n)。

因此,对于一个插入、删除或搜索比访问更频繁的应用程序,并且只能在这两种结构之间进行选择,我们更喜欢红黑树。在这种情况下,你可能会说我们更喜欢红黑树更麻烦的O(log n)访问时间。

为什么?因为权限不是我们最关心的。我们正在权衡:应用程序的性能更大程度上受到其他因素的影响。我们允许这种特定的算法受到性能影响,因为我们通过优化其他算法获得了很大的收益。

So the answer to your question is simply this: when the algorithm's growth rate isn't what we want to optimize, when we want to optimize something else. All of the other answers are special cases of this. Sometimes we optimize the run time of other operations. Sometimes we optimize for memory. Sometimes we optimize for security. Sometimes we optimize maintainability. Sometimes we optimize for development time. Even the overriding constant being low enough to matter is optimizing for run time when you know the growth rate of the algorithm isn't the greatest impact on run time. (If your data set was outside this range, you would optimize for the growth rate of the algorithm because it would eventually dominate the constant.) Everything has a cost, and in many cases, we trade the cost of a higher growth rate for the algorithm to optimize something else.

在重新设计程序时,发现一个过程用O(1)而不是O(lgN)进行了优化,但如果不是这个程序的瓶颈,就很难理解O(1) alg。这样就不用用O(1)算法了 当O(1)需要大量的内存而你无法提供时,而O(lgN)的时间可以接受。

在n有界且O(1)算法的常数乘子高于log(n)上的界的任意点。例如,在哈希集中存储值是O(1),但可能需要对哈希函数进行昂贵的计算。如果数据项可以简单地进行比较(相对于某些顺序),并且n的边界是这样的,log n明显小于任何一项上的哈希计算,那么存储在平衡二叉树中可能比存储在哈希集中更快。