有没有什么情况下你更喜欢O(log n)时间复杂度而不是O(1)时间复杂度?还是O(n)到O(log n)
你能举个例子吗?
有没有什么情况下你更喜欢O(log n)时间复杂度而不是O(1)时间复杂度?还是O(n)到O(log n)
你能举个例子吗?
当前回答
对于安全应用程序来说,这经常是这样的情况,我们希望设计算法缓慢的问题,以阻止某人过快地获得问题的答案。
这里有几个我能想到的例子。
Password hashing is sometimes made arbitrarily slow in order to make it harder to guess passwords by brute-force. This Information Security post has a bullet point about it (and much more). Bit Coin uses a controllably slow problem for a network of computers to solve in order to "mine" coins. This allows the currency to be mined at a controlled rate by the collective system. Asymmetric ciphers (like RSA) are designed to make decryption without the keys intentionally slow in order to prevent someone else without the private key to crack the encryption. The algorithms are designed to be cracked in hopefully O(2^n) time where n is the bit-length of the key (this is brute force).
在CS的其他地方,快速排序在最坏的情况下是O(n²),但在一般情况下是O(n*log(n))。因此,在分析算法效率时,“大O”分析有时并不是您唯一关心的事情。
其他回答
以下是我的观点:
有时,当算法在特定的硬件环境中运行时,会选择较差的复杂度算法来代替较好的算法。假设我们的O(1)算法非顺序地访问一个非常大的固定大小数组的每个元素来解决我们的问题。然后将该阵列放在机械硬盘驱动器或磁带上。
在这种情况下,O(logn)算法(假设它按顺序访问磁盘)变得更有利。
我在这里的回答是,在随机矩阵的所有行的快速随机加权选择是一个例子,当m不是太大时,复杂度为O(m)的算法比复杂度为O(log(m))的算法更快。
对于安全应用程序来说,这经常是这样的情况,我们希望设计算法缓慢的问题,以阻止某人过快地获得问题的答案。
这里有几个我能想到的例子。
Password hashing is sometimes made arbitrarily slow in order to make it harder to guess passwords by brute-force. This Information Security post has a bullet point about it (and much more). Bit Coin uses a controllably slow problem for a network of computers to solve in order to "mine" coins. This allows the currency to be mined at a controlled rate by the collective system. Asymmetric ciphers (like RSA) are designed to make decryption without the keys intentionally slow in order to prevent someone else without the private key to crack the encryption. The algorithms are designed to be cracked in hopefully O(2^n) time where n is the bit-length of the key (this is brute force).
在CS的其他地方,快速排序在最坏的情况下是O(n²),但在一般情况下是O(n*log(n))。因此,在分析算法效率时,“大O”分析有时并不是您唯一关心的事情。
人们已经回答了你的确切问题,所以我要回答一个稍微不同的问题,人们来这里时可能会想到这个问题。
许多“O(1)时间”算法和数据结构实际上只需要预期的O(1)时间,这意味着它们的平均运行时间是O(1),可能仅在某些假设下。
常见的例子:哈希表,“数组列表”的扩展(也就是动态大小的数组/向量)。
在这种情况下,您可能更喜欢使用保证时间绝对受对数限制的数据结构或算法,即使它们的平均性能可能更差。 一个例子可能是平衡二叉搜索树,它的运行时间平均较差,但在最坏的情况下更好。
总有一个隐藏常数,在O(log n)算法中可以更低。因此,在实际生活数据中,它可以更快地工作。
还有空间问题(比如在烤面包机上运行)。
还有开发人员的时间问题——O(log n)可能更容易实现和验证1000倍。