有没有什么情况下你更喜欢O(log n)时间复杂度而不是O(1)时间复杂度?还是O(n)到O(log n)

你能举个例子吗?


当前回答

考虑一个红黑树。它具有O(log n)的访问、搜索、插入和删除操作。与数组相比,数组的访问权限为O(1),其余操作为O(n)。

因此,对于一个插入、删除或搜索比访问更频繁的应用程序,并且只能在这两种结构之间进行选择,我们更喜欢红黑树。在这种情况下,你可能会说我们更喜欢红黑树更麻烦的O(log n)访问时间。

为什么?因为权限不是我们最关心的。我们正在权衡:应用程序的性能更大程度上受到其他因素的影响。我们允许这种特定的算法受到性能影响,因为我们通过优化其他算法获得了很大的收益。

So the answer to your question is simply this: when the algorithm's growth rate isn't what we want to optimize, when we want to optimize something else. All of the other answers are special cases of this. Sometimes we optimize the run time of other operations. Sometimes we optimize for memory. Sometimes we optimize for security. Sometimes we optimize maintainability. Sometimes we optimize for development time. Even the overriding constant being low enough to matter is optimizing for run time when you know the growth rate of the algorithm isn't the greatest impact on run time. (If your data set was outside this range, you would optimize for the growth rate of the algorithm because it would eventually dominate the constant.) Everything has a cost, and in many cases, we trade the cost of a higher growth rate for the algorithm to optimize something else.

其他回答

我很惊讶没有人提到内存绑定应用程序。

可能存在一种算法具有较少的浮点运算,这要么是因为它的复杂性(即O(1) < O(log n)),要么是因为复杂度前面的常数更小(即2n2 < 6n2)。无论如何,如果较低的FLOP算法的内存限制更大,您可能仍然更喜欢具有更多FLOP的算法。

我所说的“内存受限”是指您经常访问的数据经常超出缓存。为了获取这些数据,在对其执行操作之前,必须将内存从实际内存空间拉到缓存中。这个抓取步骤通常非常慢——比您的操作本身慢得多。

因此,如果你的算法需要更多的操作(但这些操作是在已经在缓存中的数据上执行的[因此不需要读取]),它仍然会在实际的walltime方面以更少的操作(必须在缓存外的数据上执行[因此需要读取])胜过你的算法。

Yes.

在实际情况下,我们运行了一些使用短字符串和长字符串键进行表查找的测试。

我们使用了std::map, std::unordered_map和一个哈希,该哈希最多对字符串长度进行10次采样(我们的键倾向于guidlike,所以这是体面的),以及一个哈希,对每个字符进行采样(理论上减少了冲突),一个未排序的向量,其中我们进行==比较,以及(如果我没记错的话)一个未排序的向量,其中我们还存储了一个哈希,首先比较哈希,然后比较字符。

这些算法的范围从O(1) (unordered_map)到O(n)(线性搜索)。

对于中等大小的N,通常O(N)优于O(1)。我们怀疑这是因为基于节点的容器需要我们的计算机在内存中跳跃更多,而基于线性的容器则不需要。

O(lgn)存在于两者之间。我不记得是怎么回事了。

性能差异并不大,在更大的数据集上,基于哈希的表现要好得多。所以我们坚持使用基于哈希的无序映射。

实际上,对于合理的n大小,O(lgn)为O(1)。如果你的计算机在你的表中只有40亿的空间,那么O(lgn)的上界是32。(lg(2^32)=32)(在计算机科学中,lg是log based 2的简称)。

在实践中,lg(n)算法比O(1)算法慢,不是因为对数增长因子,而是因为lg(n)部分通常意味着算法有一定程度的复杂性,并且这种复杂性比lg(n)项中的任何“增长”都增加了更大的常数因子。

然而,复杂的O(1)算法(如哈希映射)很容易具有类似或更大的常数因子。

我在这里的回答是,在随机矩阵的所有行的快速随机加权选择是一个例子,当m不是太大时,复杂度为O(m)的算法比复杂度为O(log(m))的算法更快。

考虑一个红黑树。它具有O(log n)的访问、搜索、插入和删除操作。与数组相比,数组的访问权限为O(1),其余操作为O(n)。

因此,对于一个插入、删除或搜索比访问更频繁的应用程序,并且只能在这两种结构之间进行选择,我们更喜欢红黑树。在这种情况下,你可能会说我们更喜欢红黑树更麻烦的O(log n)访问时间。

为什么?因为权限不是我们最关心的。我们正在权衡:应用程序的性能更大程度上受到其他因素的影响。我们允许这种特定的算法受到性能影响,因为我们通过优化其他算法获得了很大的收益。

So the answer to your question is simply this: when the algorithm's growth rate isn't what we want to optimize, when we want to optimize something else. All of the other answers are special cases of this. Sometimes we optimize the run time of other operations. Sometimes we optimize for memory. Sometimes we optimize for security. Sometimes we optimize maintainability. Sometimes we optimize for development time. Even the overriding constant being low enough to matter is optimizing for run time when you know the growth rate of the algorithm isn't the greatest impact on run time. (If your data set was outside this range, you would optimize for the growth rate of the algorithm because it would eventually dominate the constant.) Everything has a cost, and in many cases, we trade the cost of a higher growth rate for the algorithm to optimize something else.

以下是我的观点:

有时,当算法在特定的硬件环境中运行时,会选择较差的复杂度算法来代替较好的算法。假设我们的O(1)算法非顺序地访问一个非常大的固定大小数组的每个元素来解决我们的问题。然后将该阵列放在机械硬盘驱动器或磁带上。

在这种情况下,O(logn)算法(假设它按顺序访问磁盘)变得更有利。