我需要一个简单的浮点舍入函数,这样:

double round(double);

round(0.1) = 0
round(-0.1) = 0
round(-0.9) = -1

我可以在math.h中找到ceil()和floor() -但没有round()。

它是否以另一个名字出现在标准c++库中,或者它是否丢失了??


当前回答

函数double round(double)使用modf函数:

double round(double x)
{
    using namespace std;

    if ((numeric_limits<double>::max() - 0.5) <= x)
        return numeric_limits<double>::max();

    if ((-1*std::numeric_limits<double>::max() + 0.5) > x)
        return (-1*std::numeric_limits<double>::max());

    double intpart;
    double fractpart = modf(x, &intpart);

    if (fractpart >= 0.5)
        return (intpart + 1);
    else if (fractpart >= -0.5)
        return intpart;
    else
        return (intpart - 1);
    }

为了编译干净,必须包含“math.h”和“limits”。该函数根据以下舍入模式工作:

5.0的整数是5.0 3.8轮是4.0 2.3轮是2.0 1.5是2.0 0.501的一轮是1.0 0.5的整数是1.0 0.499轮是0.0 0.01的整数是0.0 第一轮是0.0 整数-0.01等于-0.0 -0.499等于-0.0 0.5的整数是-0.0 一轮-0.501是-1.0 一轮-1.5等于-1.0 -2.3是-2.0 轮-3.8是-4.0 -5.0的整数是-5.0

其他回答

编者注:下面的答案提供了一个简单的解决方案,其中包含几个实现缺陷(参见Shafik Yaghmour的答案以获得完整的解释)。注意,c++ 11已经将std::round、std::lround和std::llround作为内置程序。

c++ 98标准库中没有round()。不过你可以自己写。下面是round-half-up的实现:

double round(double d)
{
  return floor(d + 0.5);
}

c++ 98标准库中没有循环函数的可能原因是它实际上可以以不同的方式实现。以上是一种常见的方法,但还有其他的方法,如四舍五入到偶数,如果你要做很多四舍五入,这种方法的偏差更小,通常更好;不过实现起来有点复杂。

正如在评论和其他回答中指出的那样,ISO c++标准库直到ISO c++ 11才添加round(),当时该函数是通过引用ISO C99标准数学库而引入的。

For positive operands in [½, ub] round(x) == floor (x + 0.5), where ub is 223 for float when mapped to IEEE-754 (2008) binary32, and 252 for double when it is mapped to IEEE-754 (2008) binary64. The numbers 23 and 52 correspond to the number of stored mantissa bits in these two floating-point formats. For positive operands in [+0, ½) round(x) == 0, and for positive operands in (ub, +∞] round(x) == x. As the function is symmetric about the x-axis, negative arguments x can be handled according to round(-x) == -round(x).

这导致了下面的压缩代码。它在各种平台上编译成合理数量的机器指令。我观察到gpu上最紧凑的代码,其中my_roundf()需要大约12条指令。根据处理器架构和工具链的不同,这种基于浮点的方法可能比在不同答案中引用的newlib基于整数的实现更快或更慢。

我使用Intel编译器版本13对my_roundf()与newlib roundf()实现进行了详尽的测试,同时使用/fp:strict和/fp:fast。我还检查了newlib版本是否与Intel编译器mathimf库中的roundf()匹配。对于双精度round()不可能进行详尽的测试,但是代码在结构上与单精度实现相同。

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <math.h>

float my_roundf (float x)
{
    const float half = 0.5f;
    const float one = 2 * half;
    const float lbound = half;
    const float ubound = 1L << 23;
    float a, f, r, s, t;
    s = (x < 0) ? (-one) : one;
    a = x * s;
    t = (a < lbound) ? x : s;
    f = (a < lbound) ? 0 : floorf (a + half);
    r = (a > ubound) ? x : (t * f);
    return r;
}

double my_round (double x)
{
    const double half = 0.5;
    const double one = 2 * half;
    const double lbound = half;
    const double ubound = 1ULL << 52;
    double a, f, r, s, t;
    s = (x < 0) ? (-one) : one;
    a = x * s;
    t = (a < lbound) ? x : s;
    f = (a < lbound) ? 0 : floor (a + half);
    r = (a > ubound) ? x : (t * f);
    return r;
}

uint32_t float_as_uint (float a)
{
    uint32_t r;
    memcpy (&r, &a, sizeof(r));
    return r;
}

float uint_as_float (uint32_t a)
{
    float r;
    memcpy (&r, &a, sizeof(r));
    return r;
}

float newlib_roundf (float x)
{
    uint32_t w;
    int exponent_less_127;

    w = float_as_uint(x);
    /* Extract exponent field. */
    exponent_less_127 = (int)((w & 0x7f800000) >> 23) - 127;
    if (exponent_less_127 < 23) {
        if (exponent_less_127 < 0) {
            /* Extract sign bit. */
            w &= 0x80000000;
            if (exponent_less_127 == -1) {
                /* Result is +1.0 or -1.0. */
                w |= ((uint32_t)127 << 23);
            }
        } else {
            uint32_t exponent_mask = 0x007fffff >> exponent_less_127;
            if ((w & exponent_mask) == 0) {
                /* x has an integral value. */
                return x;
            }
            w += 0x00400000 >> exponent_less_127;
            w &= ~exponent_mask;
        }
    } else {
        if (exponent_less_127 == 128) {
            /* x is NaN or infinite so raise FE_INVALID by adding */
            return x + x;
        } else {
            return x;
        }
    }
    x = uint_as_float (w);
    return x;
}

int main (void)
{
    uint32_t argi, resi, refi;
    float arg, res, ref;

    argi = 0;
    do {
        arg = uint_as_float (argi);
        ref = newlib_roundf (arg);
        res = my_roundf (arg);
        resi = float_as_uint (res);
        refi = float_as_uint (ref);
        if (resi != refi) { // check for identical bit pattern
            printf ("!!!! arg=%08x  res=%08x  ref=%08x\n", argi, resi, refi);
            return EXIT_FAILURE;
        }
        argi++;
    } while (argi);
    return EXIT_SUCCESS;
}

不需要实现任何东西,所以我不确定为什么这么多答案涉及定义、函数或方法。

C99中

我们有下面的and和header <tgmath.h>用于类型泛型宏。

#include <math.h>
double round (double x);
float roundf (float x);
long double roundl (long double x);

如果您不能编译它,那么您可能遗漏了数学库。类似的命令适用于我拥有的每个C编译器(几个)。

gcc -lm -std=c99 ...

c++ 11

我们在#include <cmath>中有以下和其他依赖于IEEE双精度浮点数的重载。

#include <math.h>
double round (double x);
float round (float x);
long double round (long double x);
double round (T x);

在std名称空间中也有等价物。

如果不能编译,则可能使用C编译而不是c++。下面的基本命令对于g++ 6.3.1、x86_64-w64-mingw32-g++ 6.3.0、clang-x86_64++ 3.8.0和Visual c++ 2015 Community既不会产生错误也不会产生警告。

g++ -std=c++11 -Wall

有序数除法

当除两个序数时,其中T是短的,int,长,或另一个序数,舍入表达式是这样的。

T roundedQuotient = (2 * integerNumerator + 1)
    / (2 * integerDenominator);

精度

毫无疑问,浮点运算中会出现奇怪的错误,但这只是在数字出现时才会出现,与四舍五入无关。

来源不仅仅是IEEE浮点数表示的尾数中的有效数字的数量,它与我们作为人类的十进制思维有关。

10是5和2的乘积,5和2是相对质数。因此,IEEE浮点标准不可能完美地表示为所有二进制数字表示的十进制数。

这不是舍入算法的问题。在选择类型和设计计算、数据输入和数字显示时,应该考虑到数学现实。如果应用程序显示的数字显示了这些十进制-二进制转换问题,那么该应用程序在视觉上表达了数字现实中不存在的、应该更改的准确性。

round_f for ARM with math

static inline float round_f(float value)
{
    float rep;
    asm volatile ("vrinta.f32 %0,%1" : "=t"(rep) : "t"(value));
    return rep;
}

没有数学的ARM的round_f

union f__raw {
    struct {
        uint32_t massa  :23;
        uint32_t order  :8;
        uint32_t sign   :1;
    };
    int32_t     i_raw;
    float       f_raw;
};

float round_f(float value)
{
    union f__raw raw;
    int32_t exx;
    uint32_t ex_mask;
    raw.f_raw = value;
    exx = raw.order - 126;
    if (exx < 0) {
        raw.i_raw &= 0x80000000;
    } else if (exx < 24) {
        ex_mask = 0x00ffffff >> exx;
        raw.i_raw += 0x00800000 >> exx;
        if (exx == 0) ex_mask >>= 1;
        raw.i_raw &= ~ex_mask;
    };
    return  raw.f_raw;
};

Boost中还实现了某种类型的舍入:

#include <iostream>

#include <boost/numeric/conversion/converter.hpp>

template<typename T, typename S> T round2(const S& x) {
  typedef boost::numeric::conversion_traits<T, S> Traits;
  typedef boost::numeric::def_overflow_handler OverflowHandler;
  typedef boost::numeric::RoundEven<typename Traits::source_type> Rounder;
  typedef boost::numeric::converter<T, S, Traits, OverflowHandler, Rounder> Converter;
  return Converter::convert(x);
}

int main() {
  std::cout << round2<int, double>(0.1) << ' ' << round2<int, double>(-0.1) << ' ' << round2<int, double>(-0.9) << std::endl;
}

注意,这仅在执行到整数的转换时有效。