例如,乘法和除法可以使用位运算符来实现

i*2 = i<<1
i*3 = (i<<1) + i;
i*10 = (i<<3) + (i<<1)

等等。

用say (i<<3)+(i<<1)乘10是否比直接用i*10更快?有没有什么输入是不能用这种方法乘或除的?


当前回答

刚刚在我的机器上编译了这个:

int a = ...;
int b = a * 10;

当分解它时会产生输出:

MOV EAX,DWORD PTR SS:[ESP+1C] ; Move a into EAX
LEA EAX,DWORD PTR DS:[EAX+EAX*4] ; Multiply by 5 without shift !
SHL EAX, 1 ; Multiply by 2 using shift

这个版本比纯移位和加法的手工优化代码更快。

你永远不知道编译器会得到什么,所以最好只是简单地写一个普通的乘法,让它按自己想要的方式优化,除非在非常精确的情况下,你知道编译器无法优化。

其他回答

只是一个具体的衡量点:许多年前,我对两个进行了基准测试 我的哈希算法的版本:

unsigned
hash( char const* s )
{
    unsigned h = 0;
    while ( *s != '\0' ) {
        h = 127 * h + (unsigned char)*s;
        ++ s;
    }
    return h;
}

and

unsigned
hash( char const* s )
{
    unsigned h = 0;
    while ( *s != '\0' ) {
        h = (h << 7) - h + (unsigned char)*s;
        ++ s;
    }
    return h;
}

在我对它进行基准测试的每台机器上,第一台机器的速度至少和 第二。有些令人惊讶的是,它有时更快(例如在一个 Sun Sparc)。当硬件不支持快速乘法(和 大多数当时没有),编译器将转换乘法 转换成移位和加/减的适当组合。因为它 知道了最终的目标,它有时可以在少于指令的情况下这样做 当你明确地写出移位和加法/减法时。

请注意,这是15年前的事了。希望编译器 从那以后就越来越好了,所以你可以指望 编译器做正确的事情,可能比你做的更好。(另外, 这段代码看起来如此C'ish的原因是因为它是15年前的事情了。 显然,我今天会使用std::string和迭代器。)

I think in the one case that you want to multiply or divide by a power of two, you can't go wrong with using bitshift operators, even if the compiler converts them to a MUL/DIV, because some processors microcode (really, a macro) them anyway, so for those cases you will achieve an improvement, especially if the shift is more than 1. Or more explicitly, if the CPU has no bitshift operators, it will be a MUL/DIV anyway, but if the CPU has bitshift operators, you avoid a microcode branch and this is a few instructions less.

I am writing some code right now that requires a lot of doubling/halving operations because it is working on a dense binary tree, and there is one more operation that I suspect might be more optimal than an addition - a left (power of two multiply) shift with an addition. This can be replaced with a left shift and an xor if the shift is wider than the number of bits you want to add, easy example is (i<<1)^1, which adds one to a doubled value. This does not of course apply to a right shift (power of two divide) because only a left (little endian) shift fills the gap with zeros.

在我的代码中,这些乘/除2和2的幂运算被大量使用,因为公式已经很短了,每条可以消除的指令都可以获得很大的收益。如果处理器不支持这些位移操作符,就不会有增益,也不会有损失。

Also, in the algorithms I am writing, they visually represent the movements that occur so in that sense they are in fact more clear. The left hand side of a binary tree is bigger, and the right is smaller. As well as that, in my code, odd and even numbers have a special significance, and all left-hand children in the tree are odd and all right hand children, and the root, are even. In some cases, which I haven't encountered yet, but may, oh, actually, I didn't even think of this, x&1 may be a more optimal operation compared to x%2. x&1 on an even number will produce zero, but will produce 1 for an odd number.

再深入一点,如果x和3是0,我就知道4是这个数的因数,x%7是8,以此类推。我知道这些情况可能有有限的效用,但很高兴知道你可以避免模运算而使用按位逻辑运算,因为按位运算几乎总是最快的,而且对编译器来说不太可能是模糊的。

我在很大程度上发明了密集二叉树的领域,所以我预计人们可能不会理解这个评论的价值,因为很少有人想只对2的幂进行因数分解,或者只对2的幂进行乘/除。

如果在gcc编译器上比较x+x, x*2和x<<1语法的输出,那么在x86汇编中会得到相同的结果:https://godbolt.org/z/JLpp0j

        push    rbp
        mov     rbp, rsp
        mov     DWORD PTR [rbp-4], edi
        mov     eax, DWORD PTR [rbp-4]
        add     eax, eax
        pop     rbp
        ret

因此,您可以认为gcc足够聪明,可以独立于您输入的内容确定自己的最佳解决方案。

它是否真的更快取决于实际使用的硬件和编译器。

简单回答:不太可能。

长一点的回答: 你的编译器有一个优化器,它知道如何像你的目标处理器体系结构一样快速地进行乘法运算。最好的办法是清楚地告诉编译器你的意图(即i*2而不是i << 1),让它决定最快的汇编/机器码序列是什么。甚至有可能处理器本身已经将乘法指令实现为微码中的移位和加法序列。

总之,不要花太多时间担心这个。如果你想换,那就换。如果你想乘,那就乘。做语义上最清楚的事情——你的同事以后会感谢你的。或者,更有可能的是,如果你不这样做,之后会诅咒你。