例如,乘法和除法可以使用位运算符来实现

i*2 = i<<1
i*3 = (i<<1) + i;
i*10 = (i<<3) + (i<<1)

等等。

用say (i<<3)+(i<<1)乘10是否比直接用i*10更快?有没有什么输入是不能用这种方法乘或除的?


当前回答

据我所知,在一些机器上,乘法运算可能需要16到32个机器周期。是的,根据机器类型,位移运算符比乘除运算符快。

然而,某些机器确实有它们的数学处理器,其中包含乘法/除法的特殊指令。

其他回答

据我所知,在一些机器上,乘法运算可能需要16到32个机器周期。是的,根据机器类型,位移运算符比乘除运算符快。

然而,某些机器确实有它们的数学处理器,其中包含乘法/除法的特殊指令。

Shift和整数乘法指令在大多数现代cpu上具有相似的性能——在20世纪80年代,整数乘法指令相对较慢,但通常情况下不再是这样。整数乘法指令可能有更高的延迟,所以仍然可能有移位更可取的情况。同样的情况下,你可以让更多的执行单元忙(尽管这是有利有弊)。

整数除法仍然相对较慢,所以使用shift代替2的幂除法仍然是一种胜利,大多数编译器将其作为一种优化来实现。但是请注意,要使这种优化有效,红利需要是无符号的,或者必须已知是正的。对于负红利,移位和除法是不相等的!

#include <stdio.h>

int main(void)
{
    int i;

    for (i = 5; i >= -5; --i)
    {
        printf("%d / 2 = %d, %d >> 1 = %d\n", i, i / 2, i, i >> 1);
    }
    return 0;
}

输出:

5 / 2 = 2, 5 >> 1 = 2
4 / 2 = 2, 4 >> 1 = 2
3 / 2 = 1, 3 >> 1 = 1
2 / 2 = 1, 2 >> 1 = 1
1 / 2 = 0, 1 >> 1 = 0
0 / 2 = 0, 0 >> 1 = 0
-1 / 2 = 0, -1 >> 1 = -1
-2 / 2 = -1, -2 >> 1 = -1
-3 / 2 = -1, -3 >> 1 = -2
-4 / 2 = -2, -4 >> 1 = -2
-5 / 2 = -2, -5 >> 1 = -3

所以如果你想帮助编译器,那么确保变量或表达式在被除数显式无符号。

Python测试对相同的随机数执行相同的乘法1亿次。

>>> from timeit import timeit
>>> setup_str = 'import scipy; from scipy import random; scipy.random.seed(0)'
>>> N = 10*1000*1000
>>> timeit('x=random.randint(65536);', setup=setup_str, number=N)
1.894096851348877 # Time from generating the random #s and no opperati

>>> timeit('x=random.randint(65536); x*2', setup=setup_str, number=N)
2.2799630165100098
>>> timeit('x=random.randint(65536); x << 1', setup=setup_str, number=N)
2.2616429328918457

>>> timeit('x=random.randint(65536); x*10', setup=setup_str, number=N)
2.2799630165100098
>>> timeit('x=random.randint(65536); (x << 3) + (x<<1)', setup=setup_str, number=N)
2.9485139846801758

>>> timeit('x=random.randint(65536); x // 2', setup=setup_str, number=N)
2.490908145904541
>>> timeit('x=random.randint(65536); x / 2', setup=setup_str, number=N)
2.4757170677185059
>>> timeit('x=random.randint(65536); x >> 1', setup=setup_str, number=N)
2.2316000461578369

因此,在python中做移位而不是用2的幂来做乘法/除法,会有轻微的改进(~10%用于除法;~1%的乘法)。如果它不是2的幂,可能会有相当大的放缓。

同样,这些#将根据你的处理器、编译器(或解释器——为了简单起见,在python中这样做)而改变。

和其他人一样,不要过早地优化。编写可读性非常强的代码,如果不够快就进行分析,然后尝试优化慢的部分。请记住,编译器在优化方面比您做得更好。

刚刚在我的机器上编译了这个:

int a = ...;
int b = a * 10;

当分解它时会产生输出:

MOV EAX,DWORD PTR SS:[ESP+1C] ; Move a into EAX
LEA EAX,DWORD PTR DS:[EAX+EAX*4] ; Multiply by 5 without shift !
SHL EAX, 1 ; Multiply by 2 using shift

这个版本比纯移位和加法的手工优化代码更快。

你永远不知道编译器会得到什么,所以最好只是简单地写一个普通的乘法,让它按自己想要的方式优化,除非在非常精确的情况下,你知道编译器无法优化。

移位通常比指令级的乘法快得多,但你可能会浪费时间做过早的优化。编译器可以在编译时很好地执行这些优化。自己做会影响可读性,而且可能对性能没有影响。如果您已经进行了概要分析并发现这是一个瓶颈,那么这样做可能是值得的。

实际上,这种被称为“魔法除法”的除法技巧实际上可以产生巨大的收益。同样,你应该首先分析它是否需要。但是如果你真的使用它,周围有一些有用的程序可以帮助你弄清楚相同的除法语义需要什么指令。这里有一个例子:http://www.masm32.com/board/index.php?topic=12421.0

我从MASM32上的OP线程中引用了一个例子:

include ConstDiv.inc
...
mov eax,9999999
; divide eax by 100000
cdiv 100000
; edx = quotient

会产生:

mov eax,9999999
mov edx,0A7C5AC47h
add eax,1
.if !CARRY?
    mul edx
.endif
shr edx,16