例如,乘法和除法可以使用位运算符来实现

i*2 = i<<1
i*3 = (i<<1) + i;
i*10 = (i<<3) + (i<<1)

等等。

用say (i<<3)+(i<<1)乘10是否比直接用i*10更快?有没有什么输入是不能用这种方法乘或除的?


当前回答

有些优化编译器无法做到,因为它们只适用于减少的输入集。

下面是c++示例代码,可以执行更快的除法,执行64位“乘倒数”。分子和分母都必须低于某个阈值。注意,它必须被编译为使用64位指令才能比普通除法更快。

#include <stdio.h>
#include <chrono>

static const unsigned s_bc = 32;
static const unsigned long long s_p = 1ULL << s_bc;
static const unsigned long long s_hp = s_p / 2;

static unsigned long long s_f;
static unsigned long long s_fr;

static void fastDivInitialize(const unsigned d)
{
    s_f = s_p / d;
    s_fr = s_f * (s_p - (s_f * d));
}

static unsigned fastDiv(const unsigned n)
{
    return (s_f * n + ((s_fr * n + s_hp) >> s_bc)) >> s_bc;
}

static bool fastDivCheck(const unsigned n, const unsigned d)
{
    // 32 to 64 cycles latency on modern cpus
    const unsigned expected = n / d;

    // At least 10 cycles latency on modern cpus
    const unsigned result = fastDiv(n);

    if (result != expected)
    {
        printf("Failed for: %u/%u != %u\n", n, d, expected);
        return false;
    }

    return true;
}

int main()
{
    unsigned result = 0;

    // Make sure to verify it works for your expected set of inputs
    const unsigned MAX_N = 65535;
    const unsigned MAX_D = 40000;

    const double ONE_SECOND_COUNT = 1000000000.0;

    auto t0 = std::chrono::steady_clock::now();
    unsigned count = 0;
    printf("Verifying...\n");
    for (unsigned d = 1; d <= MAX_D; ++d)
    {
        fastDivInitialize(d);
        for (unsigned n = 0; n <= MAX_N; ++n)
        {
            count += !fastDivCheck(n, d);
        }
    }
    auto t1 = std::chrono::steady_clock::now();
    printf("Errors: %u / %u (%.4fs)\n", count, MAX_D * (MAX_N + 1), (t1 - t0).count() / ONE_SECOND_COUNT);

    t0 = t1;
    for (unsigned d = 1; d <= MAX_D; ++d)
    {
        fastDivInitialize(d);
        for (unsigned n = 0; n <= MAX_N; ++n)
        {
            result += fastDiv(n);
        }
    }
    t1 = std::chrono::steady_clock::now();
    printf("Fast division time: %.4fs\n", (t1 - t0).count() / ONE_SECOND_COUNT);

    t0 = t1;
    count = 0;
    for (unsigned d = 1; d <= MAX_D; ++d)
    {
        for (unsigned n = 0; n <= MAX_N; ++n)
        {
            result += n / d;
        }
    }
    t1 = std::chrono::steady_clock::now();
    printf("Normal division time: %.4fs\n", (t1 - t0).count() / ONE_SECOND_COUNT);

    getchar();
    return result;
}

其他回答

这完全取决于目标设备、语言、目的等。

像素压缩显卡驱动程序?很有可能,是的!

.NET业务应用程序为您的部门?根本没必要去调查。

对于一款面向移动设备的高性能游戏来说,这可能是值得一试的,但前提是要进行更简单的优化。

简单回答:不太可能。

长一点的回答: 你的编译器有一个优化器,它知道如何像你的目标处理器体系结构一样快速地进行乘法运算。最好的办法是清楚地告诉编译器你的意图(即i*2而不是i << 1),让它决定最快的汇编/机器码序列是什么。甚至有可能处理器本身已经将乘法指令实现为微码中的移位和加法序列。

总之,不要花太多时间担心这个。如果你想换,那就换。如果你想乘,那就乘。做语义上最清楚的事情——你的同事以后会感谢你的。或者,更有可能的是,如果你不这样做,之后会诅咒你。

移位通常比指令级的乘法快得多,但你可能会浪费时间做过早的优化。编译器可以在编译时很好地执行这些优化。自己做会影响可读性,而且可能对性能没有影响。如果您已经进行了概要分析并发现这是一个瓶颈,那么这样做可能是值得的。

实际上,这种被称为“魔法除法”的除法技巧实际上可以产生巨大的收益。同样,你应该首先分析它是否需要。但是如果你真的使用它,周围有一些有用的程序可以帮助你弄清楚相同的除法语义需要什么指令。这里有一个例子:http://www.masm32.com/board/index.php?topic=12421.0

我从MASM32上的OP线程中引用了一个例子:

include ConstDiv.inc
...
mov eax,9999999
; divide eax by 100000
cdiv 100000
; edx = quotient

会产生:

mov eax,9999999
mov edx,0A7C5AC47h
add eax,1
.if !CARRY?
    mul edx
.endif
shr edx,16

刚刚在我的机器上编译了这个:

int a = ...;
int b = a * 10;

当分解它时会产生输出:

MOV EAX,DWORD PTR SS:[ESP+1C] ; Move a into EAX
LEA EAX,DWORD PTR DS:[EAX+EAX*4] ; Multiply by 5 without shift !
SHL EAX, 1 ; Multiply by 2 using shift

这个版本比纯移位和加法的手工优化代码更快。

你永远不知道编译器会得到什么,所以最好只是简单地写一个普通的乘法,让它按自己想要的方式优化,除非在非常精确的情况下,你知道编译器无法优化。

除了所有其他好的答案,让我指出当你指除法或乘法时不使用shift的另一个原因。我从未见过有人因为忘记乘法和加法的相对优先级而导致错误。我曾经见过,当维护程序员忘记了通过移位的“乘法”在逻辑上是乘法,但在语法上与乘法的优先级不同时,就会引入错误。X * 2 + z和X << 1 + z非常不同!

如果你处理的是数字,那就使用算术运算符,比如+ - * / %。如果您正在处理比特数组,请使用& ^ | >>这样的比特旋转操作符。不要把它们混在一起;一个表达式如果同时具有位旋转和算术,那么这个表达式就是一个等待发生的错误。