例如,乘法和除法可以使用位运算符来实现
i*2 = i<<1
i*3 = (i<<1) + i;
i*10 = (i<<3) + (i<<1)
等等。
用say (i<<3)+(i<<1)乘10是否比直接用i*10更快?有没有什么输入是不能用这种方法乘或除的?
例如,乘法和除法可以使用位运算符来实现
i*2 = i<<1
i*3 = (i<<1) + i;
i*10 = (i<<3) + (i<<1)
等等。
用say (i<<3)+(i<<1)乘10是否比直接用i*10更快?有没有什么输入是不能用这种方法乘或除的?
当前回答
有些优化编译器无法做到,因为它们只适用于减少的输入集。
下面是c++示例代码,可以执行更快的除法,执行64位“乘倒数”。分子和分母都必须低于某个阈值。注意,它必须被编译为使用64位指令才能比普通除法更快。
#include <stdio.h>
#include <chrono>
static const unsigned s_bc = 32;
static const unsigned long long s_p = 1ULL << s_bc;
static const unsigned long long s_hp = s_p / 2;
static unsigned long long s_f;
static unsigned long long s_fr;
static void fastDivInitialize(const unsigned d)
{
s_f = s_p / d;
s_fr = s_f * (s_p - (s_f * d));
}
static unsigned fastDiv(const unsigned n)
{
return (s_f * n + ((s_fr * n + s_hp) >> s_bc)) >> s_bc;
}
static bool fastDivCheck(const unsigned n, const unsigned d)
{
// 32 to 64 cycles latency on modern cpus
const unsigned expected = n / d;
// At least 10 cycles latency on modern cpus
const unsigned result = fastDiv(n);
if (result != expected)
{
printf("Failed for: %u/%u != %u\n", n, d, expected);
return false;
}
return true;
}
int main()
{
unsigned result = 0;
// Make sure to verify it works for your expected set of inputs
const unsigned MAX_N = 65535;
const unsigned MAX_D = 40000;
const double ONE_SECOND_COUNT = 1000000000.0;
auto t0 = std::chrono::steady_clock::now();
unsigned count = 0;
printf("Verifying...\n");
for (unsigned d = 1; d <= MAX_D; ++d)
{
fastDivInitialize(d);
for (unsigned n = 0; n <= MAX_N; ++n)
{
count += !fastDivCheck(n, d);
}
}
auto t1 = std::chrono::steady_clock::now();
printf("Errors: %u / %u (%.4fs)\n", count, MAX_D * (MAX_N + 1), (t1 - t0).count() / ONE_SECOND_COUNT);
t0 = t1;
for (unsigned d = 1; d <= MAX_D; ++d)
{
fastDivInitialize(d);
for (unsigned n = 0; n <= MAX_N; ++n)
{
result += fastDiv(n);
}
}
t1 = std::chrono::steady_clock::now();
printf("Fast division time: %.4fs\n", (t1 - t0).count() / ONE_SECOND_COUNT);
t0 = t1;
count = 0;
for (unsigned d = 1; d <= MAX_D; ++d)
{
for (unsigned n = 0; n <= MAX_N; ++n)
{
result += n / d;
}
}
t1 = std::chrono::steady_clock::now();
printf("Normal division time: %.4fs\n", (t1 - t0).count() / ONE_SECOND_COUNT);
getchar();
return result;
}
其他回答
它是否真的更快取决于实际使用的硬件和编译器。
这完全取决于目标设备、语言、目的等。
像素压缩显卡驱动程序?很有可能,是的!
.NET业务应用程序为您的部门?根本没必要去调查。
对于一款面向移动设备的高性能游戏来说,这可能是值得一试的,但前提是要进行更简单的优化。
这取决于处理器和编译器。一些编译器已经通过这种方式优化代码了,其他的还没有。 因此,每次需要以这种方式优化代码时,您都需要检查。
除非您迫切需要优化,否则我不会为了节省汇编指令或处理器周期而打乱源代码。
据我所知,在一些机器上,乘法运算可能需要16到32个机器周期。是的,根据机器类型,位移运算符比乘除运算符快。
然而,某些机器确实有它们的数学处理器,其中包含乘法/除法的特殊指令。
只是一个具体的衡量点:许多年前,我对两个进行了基准测试 我的哈希算法的版本:
unsigned
hash( char const* s )
{
unsigned h = 0;
while ( *s != '\0' ) {
h = 127 * h + (unsigned char)*s;
++ s;
}
return h;
}
and
unsigned
hash( char const* s )
{
unsigned h = 0;
while ( *s != '\0' ) {
h = (h << 7) - h + (unsigned char)*s;
++ s;
}
return h;
}
在我对它进行基准测试的每台机器上,第一台机器的速度至少和 第二。有些令人惊讶的是,它有时更快(例如在一个 Sun Sparc)。当硬件不支持快速乘法(和 大多数当时没有),编译器将转换乘法 转换成移位和加/减的适当组合。因为它 知道了最终的目标,它有时可以在少于指令的情况下这样做 当你明确地写出移位和加法/减法时。
请注意,这是15年前的事了。希望编译器 从那以后就越来越好了,所以你可以指望 编译器做正确的事情,可能比你做的更好。(另外, 这段代码看起来如此C'ish的原因是因为它是15年前的事情了。 显然,我今天会使用std::string和迭代器。)