例如,乘法和除法可以使用位运算符来实现

i*2 = i<<1
i*3 = (i<<1) + i;
i*10 = (i<<3) + (i<<1)

等等。

用say (i<<3)+(i<<1)乘10是否比直接用i*10更快?有没有什么输入是不能用这种方法乘或除的?


当前回答

不要这样做,除非你绝对需要这样做,并且你的代码意图是移位而不是乘法/除法。

在典型的日子里,你可能会节省一些机器周期(或松弛,因为编译器更知道优化什么),但成本并不值得——你把时间花在小细节上而不是实际的工作上,维护代码变得更加困难,你的同事会诅咒你。

对于高负载计算,您可能需要这样做,其中每个节省的周期意味着几分钟的运行时。但是,您应该一次优化一个地方,并每次都进行性能测试,看看您是否真的使它更快了,还是破坏了编译器逻辑。

其他回答

据我所知,在一些机器上,乘法运算可能需要16到32个机器周期。是的,根据机器类型,位移运算符比乘除运算符快。

然而,某些机器确实有它们的数学处理器,其中包含乘法/除法的特殊指令。

移位通常比指令级的乘法快得多,但你可能会浪费时间做过早的优化。编译器可以在编译时很好地执行这些优化。自己做会影响可读性,而且可能对性能没有影响。如果您已经进行了概要分析并发现这是一个瓶颈,那么这样做可能是值得的。

实际上,这种被称为“魔法除法”的除法技巧实际上可以产生巨大的收益。同样,你应该首先分析它是否需要。但是如果你真的使用它,周围有一些有用的程序可以帮助你弄清楚相同的除法语义需要什么指令。这里有一个例子:http://www.masm32.com/board/index.php?topic=12421.0

我从MASM32上的OP线程中引用了一个例子:

include ConstDiv.inc
...
mov eax,9999999
; divide eax by 100000
cdiv 100000
; edx = quotient

会产生:

mov eax,9999999
mov edx,0A7C5AC47h
add eax,1
.if !CARRY?
    mul edx
.endif
shr edx,16

有些优化编译器无法做到,因为它们只适用于减少的输入集。

下面是c++示例代码,可以执行更快的除法,执行64位“乘倒数”。分子和分母都必须低于某个阈值。注意,它必须被编译为使用64位指令才能比普通除法更快。

#include <stdio.h>
#include <chrono>

static const unsigned s_bc = 32;
static const unsigned long long s_p = 1ULL << s_bc;
static const unsigned long long s_hp = s_p / 2;

static unsigned long long s_f;
static unsigned long long s_fr;

static void fastDivInitialize(const unsigned d)
{
    s_f = s_p / d;
    s_fr = s_f * (s_p - (s_f * d));
}

static unsigned fastDiv(const unsigned n)
{
    return (s_f * n + ((s_fr * n + s_hp) >> s_bc)) >> s_bc;
}

static bool fastDivCheck(const unsigned n, const unsigned d)
{
    // 32 to 64 cycles latency on modern cpus
    const unsigned expected = n / d;

    // At least 10 cycles latency on modern cpus
    const unsigned result = fastDiv(n);

    if (result != expected)
    {
        printf("Failed for: %u/%u != %u\n", n, d, expected);
        return false;
    }

    return true;
}

int main()
{
    unsigned result = 0;

    // Make sure to verify it works for your expected set of inputs
    const unsigned MAX_N = 65535;
    const unsigned MAX_D = 40000;

    const double ONE_SECOND_COUNT = 1000000000.0;

    auto t0 = std::chrono::steady_clock::now();
    unsigned count = 0;
    printf("Verifying...\n");
    for (unsigned d = 1; d <= MAX_D; ++d)
    {
        fastDivInitialize(d);
        for (unsigned n = 0; n <= MAX_N; ++n)
        {
            count += !fastDivCheck(n, d);
        }
    }
    auto t1 = std::chrono::steady_clock::now();
    printf("Errors: %u / %u (%.4fs)\n", count, MAX_D * (MAX_N + 1), (t1 - t0).count() / ONE_SECOND_COUNT);

    t0 = t1;
    for (unsigned d = 1; d <= MAX_D; ++d)
    {
        fastDivInitialize(d);
        for (unsigned n = 0; n <= MAX_N; ++n)
        {
            result += fastDiv(n);
        }
    }
    t1 = std::chrono::steady_clock::now();
    printf("Fast division time: %.4fs\n", (t1 - t0).count() / ONE_SECOND_COUNT);

    t0 = t1;
    count = 0;
    for (unsigned d = 1; d <= MAX_D; ++d)
    {
        for (unsigned n = 0; n <= MAX_N; ++n)
        {
            result += n / d;
        }
    }
    t1 = std::chrono::steady_clock::now();
    printf("Normal division time: %.4fs\n", (t1 - t0).count() / ONE_SECOND_COUNT);

    getchar();
    return result;
}

这取决于处理器和编译器。一些编译器已经通过这种方式优化代码了,其他的还没有。 因此,每次需要以这种方式优化代码时,您都需要检查。

除非您迫切需要优化,否则我不会为了节省汇编指令或处理器周期而打乱源代码。

如果在gcc编译器上比较x+x, x*2和x<<1语法的输出,那么在x86汇编中会得到相同的结果:https://godbolt.org/z/JLpp0j

        push    rbp
        mov     rbp, rsp
        mov     DWORD PTR [rbp-4], edi
        mov     eax, DWORD PTR [rbp-4]
        add     eax, eax
        pop     rbp
        ret

因此,您可以认为gcc足够聪明,可以独立于您输入的内容确定自己的最佳解决方案。