如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?


当前回答

我认为在(非尾)递归中,每当函数被调用时,分配一个新的堆栈等都会受到性能影响(当然取决于语言)。

其他回答

如果我们使用循环而不是 递归或者反之,在算法中两者都可以达到相同的目的?”

Usually yes if you are writing in a imperative language iteration will run faster than recursion, the performance hit is minimized in problems where the iterative solution requires manipulating Stacks and popping items off of a stack due to the recursive nature of the problem. There are a lot of times where the recursive implementation is much easier to read because the code is much shorter, so you do want to consider maintainability. Especailly in cases where the problem has a recursive nature. So take for example:

河内塔的递归实现:

def TowerOfHanoi(n , source, destination, auxiliary):
    if n==1:
        print ("Move disk 1 from source",source,"to destination",destination)
        return
    TowerOfHanoi(n-1, source, auxiliary, destination)
    print ("Move disk",n,"from source",source,"to destination",destination)
    TowerOfHanoi(n-1, auxiliary, destination, source)

相当短,很容易读。将其与对应的迭代TowerOfHanoi进行比较:

# Python3 program for iterative Tower of Hanoi
import sys
 
# A structure to represent a stack
class Stack:
    # Constructor to set the data of
    # the newly created tree node
    def __init__(self, capacity):
        self.capacity = capacity
        self.top = -1
        self.array = [0]*capacity
 
# function to create a stack of given capacity.
def createStack(capacity):
    stack = Stack(capacity)
    return stack
  
# Stack is full when top is equal to the last index
def isFull(stack):
    return (stack.top == (stack.capacity - 1))
   
# Stack is empty when top is equal to -1
def isEmpty(stack):
    return (stack.top == -1)
   
# Function to add an item to stack.
# It increases top by 1
def push(stack, item):
    if(isFull(stack)):
        return
    stack.top+=1
    stack.array[stack.top] = item
   
# Function to remove an item from stack.
# It decreases top by 1
def Pop(stack):
    if(isEmpty(stack)):
        return -sys.maxsize
    Top = stack.top
    stack.top-=1
    return stack.array[Top]
   
# Function to implement legal
# movement between two poles
def moveDisksBetweenTwoPoles(src, dest, s, d):
    pole1TopDisk = Pop(src)
    pole2TopDisk = Pop(dest)
 
    # When pole 1 is empty
    if (pole1TopDisk == -sys.maxsize):
        push(src, pole2TopDisk)
        moveDisk(d, s, pole2TopDisk)
       
    # When pole2 pole is empty
    else if (pole2TopDisk == -sys.maxsize):
        push(dest, pole1TopDisk)
        moveDisk(s, d, pole1TopDisk)
       
    # When top disk of pole1 > top disk of pole2
    else if (pole1TopDisk > pole2TopDisk):
        push(src, pole1TopDisk)
        push(src, pole2TopDisk)
        moveDisk(d, s, pole2TopDisk)
       
    # When top disk of pole1 < top disk of pole2
    else:
        push(dest, pole2TopDisk)
        push(dest, pole1TopDisk)
        moveDisk(s, d, pole1TopDisk)
   
# Function to show the movement of disks
def moveDisk(fromPeg, toPeg, disk):
    print("Move the disk", disk, "from '", fromPeg, "' to '", toPeg, "'")
   
# Function to implement TOH puzzle
def tohIterative(num_of_disks, src, aux, dest):
    s, d, a = 'S', 'D', 'A'
   
    # If number of disks is even, then interchange
    # destination pole and auxiliary pole
    if (num_of_disks % 2 == 0):
        temp = d
        d = a
        a = temp
    total_num_of_moves = int(pow(2, num_of_disks) - 1)
   
    # Larger disks will be pushed first
    for i in range(num_of_disks, 0, -1):
        push(src, i)
   
    for i in range(1, total_num_of_moves + 1):
        if (i % 3 == 1):
            moveDisksBetweenTwoPoles(src, dest, s, d)
   
        else if (i % 3 == 2):
            moveDisksBetweenTwoPoles(src, aux, s, a)
   
        else if (i % 3 == 0):
            moveDisksBetweenTwoPoles(aux, dest, a, d)
 
# Input: number of disks
num_of_disks = 3
 
# Create three stacks of size 'num_of_disks'
# to hold the disks
src = createStack(num_of_disks)
dest = createStack(num_of_disks)
aux = createStack(num_of_disks)
 
tohIterative(num_of_disks, src, aux, dest)

Now the first one is way easier to read because suprise suprise shorter code is usually easier to understand than code that is 10 times longer. Sometimes you want to ask yourself is the extra performance gain really worth it? The amount of hours wasted debugging the code. Is the iterative TowerOfHanoi faster than the Recursive TowerOfHanoi? Probably, but not by a big margin. Would I like to program Recursive problems like TowerOfHanoi using iteration? Hell no. Next we have another recursive function the Ackermann function: Using recursion:

    if m == 0:
        # BASE CASE
        return n + 1
    elif m > 0 and n == 0:
        # RECURSIVE CASE
        return ackermann(m - 1, 1)
    elif m > 0 and n > 0:
        # RECURSIVE CASE
        return ackermann(m - 1, ackermann(m, n - 1))

使用迭代:

callStack = [{'m': 2, 'n': 3, 'indentation': 0, 'instrPtr': 'start'}]
returnValue = None

while len(callStack) != 0:
    m = callStack[-1]['m']
    n = callStack[-1]['n']
    indentation = callStack[-1]['indentation']
    instrPtr = callStack[-1]['instrPtr']

    if instrPtr == 'start':
        print('%sackermann(%s, %s)' % (' ' * indentation, m, n))

        if m == 0:
            # BASE CASE
            returnValue = n + 1
            callStack.pop()
            continue
        elif m > 0 and n == 0:
            # RECURSIVE CASE
            callStack[-1]['instrPtr'] = 'after first recursive case'
            callStack.append({'m': m - 1, 'n': 1, 'indentation': indentation + 1, 'instrPtr': 'start'})
            continue
        elif m > 0 and n > 0:
            # RECURSIVE CASE
            callStack[-1]['instrPtr'] = 'after second recursive case, inner call'
            callStack.append({'m': m, 'n': n - 1, 'indentation': indentation + 1, 'instrPtr': 'start'})
            continue
    elif instrPtr == 'after first recursive case':
        returnValue = returnValue
        callStack.pop()
        continue
    elif instrPtr == 'after second recursive case, inner call':
        callStack[-1]['innerCallResult'] = returnValue
        callStack[-1]['instrPtr'] = 'after second recursive case, outer call'
        callStack.append({'m': m - 1, 'n': returnValue, 'indentation': indentation + 1, 'instrPtr': 'start'})
        continue
    elif instrPtr == 'after second recursive case, outer call':
        returnValue = returnValue
        callStack.pop()
        continue
print(returnValue)

再说一次,递归实现更容易理解。所以我的结论是,如果问题本质上是递归的,需要操作堆栈中的项,就使用递归。

这取决于语言。在Java中,你应该使用循环。函数式语言优化递归。

迈克说得对。Java编译器或JVM没有优化尾部递归。你总是会得到这样的堆栈溢出:

int count(int i) {
  return i >= 100000000 ? i : count(i+1);
}

堆栈溢出只会发生在编程语言没有内置内存管理....否则,请确保在函数(或函数调用、STDLbs等)中有一些内容。如果没有递归,就不可能有这样的东西……谷歌或SQL,或任何地方一个人必须有效地排序大型数据结构(类)或数据库。

如果你想要遍历文件,递归是一种方法,我敢肯定这就是find * | ?grep *的工作方式。有点像双重递归,特别是管道(但不要像很多人那样做一堆系统调用,如果你要把它放在那里供别人使用的话)。

高级语言,甚至clang/cpp也可以在后台实现相同的功能。

递归比迭代的任何可能定义都更简单(因此也更基本)。你可以只用一对组合子定义一个图灵完备系统(是的,在这样的系统中,甚至递归本身也是一个衍生概念)。Lambda演算是一个同样强大的基本系统,具有递归函数。但是如果你想正确地定义一个迭代,你需要更多的原语来开始。

至于代码——不,递归代码实际上比纯迭代代码更容易理解和维护,因为大多数数据结构都是递归的。当然,为了正确使用它,至少需要一种支持高阶函数和闭包的语言,以简洁的方式获得所有标准的组合子和迭代器。当然,在c++中,复杂的递归解决方案可能看起来有点丑,除非你是fc++的铁杆用户。