如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?
当前回答
这取决于语言。在Java中,你应该使用循环。函数式语言优化递归。
其他回答
递归在某些情况下非常有用。例如,考虑查找阶乘的代码
int factorial ( int input )
{
int x, fact = 1;
for ( x = input; x > 1; x--)
fact *= x;
return fact;
}
现在用递归函数来考虑这个问题
int factorial ( int input )
{
if (input == 0)
{
return 1;
}
return input * factorial(input - 1);
}
通过观察这两个,我们可以看到递归很容易理解。 但如果不小心使用,它也会很容易出错。 假设如果我们错过了if (input == 0),那么代码将执行一段时间,并以堆栈溢出结束。
如果我们使用循环而不是 递归或者反之,在算法中两者都可以达到相同的目的?”
Usually yes if you are writing in a imperative language iteration will run faster than recursion, the performance hit is minimized in problems where the iterative solution requires manipulating Stacks and popping items off of a stack due to the recursive nature of the problem. There are a lot of times where the recursive implementation is much easier to read because the code is much shorter, so you do want to consider maintainability. Especailly in cases where the problem has a recursive nature. So take for example:
河内塔的递归实现:
def TowerOfHanoi(n , source, destination, auxiliary):
if n==1:
print ("Move disk 1 from source",source,"to destination",destination)
return
TowerOfHanoi(n-1, source, auxiliary, destination)
print ("Move disk",n,"from source",source,"to destination",destination)
TowerOfHanoi(n-1, auxiliary, destination, source)
相当短,很容易读。将其与对应的迭代TowerOfHanoi进行比较:
# Python3 program for iterative Tower of Hanoi
import sys
# A structure to represent a stack
class Stack:
# Constructor to set the data of
# the newly created tree node
def __init__(self, capacity):
self.capacity = capacity
self.top = -1
self.array = [0]*capacity
# function to create a stack of given capacity.
def createStack(capacity):
stack = Stack(capacity)
return stack
# Stack is full when top is equal to the last index
def isFull(stack):
return (stack.top == (stack.capacity - 1))
# Stack is empty when top is equal to -1
def isEmpty(stack):
return (stack.top == -1)
# Function to add an item to stack.
# It increases top by 1
def push(stack, item):
if(isFull(stack)):
return
stack.top+=1
stack.array[stack.top] = item
# Function to remove an item from stack.
# It decreases top by 1
def Pop(stack):
if(isEmpty(stack)):
return -sys.maxsize
Top = stack.top
stack.top-=1
return stack.array[Top]
# Function to implement legal
# movement between two poles
def moveDisksBetweenTwoPoles(src, dest, s, d):
pole1TopDisk = Pop(src)
pole2TopDisk = Pop(dest)
# When pole 1 is empty
if (pole1TopDisk == -sys.maxsize):
push(src, pole2TopDisk)
moveDisk(d, s, pole2TopDisk)
# When pole2 pole is empty
else if (pole2TopDisk == -sys.maxsize):
push(dest, pole1TopDisk)
moveDisk(s, d, pole1TopDisk)
# When top disk of pole1 > top disk of pole2
else if (pole1TopDisk > pole2TopDisk):
push(src, pole1TopDisk)
push(src, pole2TopDisk)
moveDisk(d, s, pole2TopDisk)
# When top disk of pole1 < top disk of pole2
else:
push(dest, pole2TopDisk)
push(dest, pole1TopDisk)
moveDisk(s, d, pole1TopDisk)
# Function to show the movement of disks
def moveDisk(fromPeg, toPeg, disk):
print("Move the disk", disk, "from '", fromPeg, "' to '", toPeg, "'")
# Function to implement TOH puzzle
def tohIterative(num_of_disks, src, aux, dest):
s, d, a = 'S', 'D', 'A'
# If number of disks is even, then interchange
# destination pole and auxiliary pole
if (num_of_disks % 2 == 0):
temp = d
d = a
a = temp
total_num_of_moves = int(pow(2, num_of_disks) - 1)
# Larger disks will be pushed first
for i in range(num_of_disks, 0, -1):
push(src, i)
for i in range(1, total_num_of_moves + 1):
if (i % 3 == 1):
moveDisksBetweenTwoPoles(src, dest, s, d)
else if (i % 3 == 2):
moveDisksBetweenTwoPoles(src, aux, s, a)
else if (i % 3 == 0):
moveDisksBetweenTwoPoles(aux, dest, a, d)
# Input: number of disks
num_of_disks = 3
# Create three stacks of size 'num_of_disks'
# to hold the disks
src = createStack(num_of_disks)
dest = createStack(num_of_disks)
aux = createStack(num_of_disks)
tohIterative(num_of_disks, src, aux, dest)
Now the first one is way easier to read because suprise suprise shorter code is usually easier to understand than code that is 10 times longer. Sometimes you want to ask yourself is the extra performance gain really worth it? The amount of hours wasted debugging the code. Is the iterative TowerOfHanoi faster than the Recursive TowerOfHanoi? Probably, but not by a big margin. Would I like to program Recursive problems like TowerOfHanoi using iteration? Hell no. Next we have another recursive function the Ackermann function: Using recursion:
if m == 0:
# BASE CASE
return n + 1
elif m > 0 and n == 0:
# RECURSIVE CASE
return ackermann(m - 1, 1)
elif m > 0 and n > 0:
# RECURSIVE CASE
return ackermann(m - 1, ackermann(m, n - 1))
使用迭代:
callStack = [{'m': 2, 'n': 3, 'indentation': 0, 'instrPtr': 'start'}]
returnValue = None
while len(callStack) != 0:
m = callStack[-1]['m']
n = callStack[-1]['n']
indentation = callStack[-1]['indentation']
instrPtr = callStack[-1]['instrPtr']
if instrPtr == 'start':
print('%sackermann(%s, %s)' % (' ' * indentation, m, n))
if m == 0:
# BASE CASE
returnValue = n + 1
callStack.pop()
continue
elif m > 0 and n == 0:
# RECURSIVE CASE
callStack[-1]['instrPtr'] = 'after first recursive case'
callStack.append({'m': m - 1, 'n': 1, 'indentation': indentation + 1, 'instrPtr': 'start'})
continue
elif m > 0 and n > 0:
# RECURSIVE CASE
callStack[-1]['instrPtr'] = 'after second recursive case, inner call'
callStack.append({'m': m, 'n': n - 1, 'indentation': indentation + 1, 'instrPtr': 'start'})
continue
elif instrPtr == 'after first recursive case':
returnValue = returnValue
callStack.pop()
continue
elif instrPtr == 'after second recursive case, inner call':
callStack[-1]['innerCallResult'] = returnValue
callStack[-1]['instrPtr'] = 'after second recursive case, outer call'
callStack.append({'m': m - 1, 'n': returnValue, 'indentation': indentation + 1, 'instrPtr': 'start'})
continue
elif instrPtr == 'after second recursive case, outer call':
returnValue = returnValue
callStack.pop()
continue
print(returnValue)
再说一次,递归实现更容易理解。所以我的结论是,如果问题本质上是递归的,需要操作堆栈中的项,就使用递归。
如果你只是在一个列表上迭代,那么当然,迭代出去。
其他几个答案提到了(深度优先)树遍历。这真的是一个很好的例子,因为这是对一个非常普通的数据结构所做的非常普通的事情。对于这个问题,递归是非常直观的。
点击这里查看“查找”方法: http://penguin.ewu.edu/cscd300/Topic/BSTintro/index.html
递归比迭代的任何可能定义都更简单(因此也更基本)。你可以只用一对组合子定义一个图灵完备系统(是的,在这样的系统中,甚至递归本身也是一个衍生概念)。Lambda演算是一个同样强大的基本系统,具有递归函数。但是如果你想正确地定义一个迭代,你需要更多的原语来开始。
至于代码——不,递归代码实际上比纯迭代代码更容易理解和维护,因为大多数数据结构都是递归的。当然,为了正确使用它,至少需要一种支持高阶函数和闭包的语言,以简洁的方式获得所有标准的组合子和迭代器。当然,在c++中,复杂的递归解决方案可能看起来有点丑,除非你是fc++的铁杆用户。
我认为在(非尾)递归中,每当函数被调用时,分配一个新的堆栈等都会受到性能影响(当然取决于语言)。
推荐文章
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 为什么更快地检查字典是否包含键,而不是捕捉异常,以防它不?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字
- HSL到RGB的颜色转换
- 使用Java在原语数组中查找最大/最小值
- 好的Java图算法库?
- 当启用c++ 11时,std::vector性能回归
- foreach和map有区别吗?
- 使用c++ 11的“auto”可以提高性能吗?
- 如何做一个递归子文件夹搜索和返回文件在一个列表?
- std::vector比普通数组慢很多吗?
- 什么时候我应该使用Kruskal而不是Prim(反之亦然)?
- 取一个集中在中心的随机数
- 优化PostgreSQL进行快速测试
- 如果性能很重要,我应该使用Java的String.format()吗?