如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?
当前回答
我将通过“归纳”设计一个Haskell数据结构来回答你的问题,这是递归的一种“对偶”。然后我会展示这种对偶性是如何带来好的结果的。
我们为简单树引入一个类型:
data Tree a = Branch (Tree a) (Tree a)
| Leaf a
deriving (Eq)
我们可以把这个定义理解为“一棵树是一个分支(包含两棵树)或一个叶子(包含一个数据值)”。叶结点是一种最小的情况。如果树不是叶子,那么它一定是包含两棵树的复合树。这些是唯一的例子。
让我们做一个树:
example :: Tree Int
example = Branch (Leaf 1)
(Branch (Leaf 2)
(Leaf 3))
现在,让我们假设我们想给树中的每个值加1。我们可以通过调用:
addOne :: Tree Int -> Tree Int
addOne (Branch a b) = Branch (addOne a) (addOne b)
addOne (Leaf a) = Leaf (a + 1)
首先,请注意这实际上是一个递归定义。它将数据构造函数Branch和Leaf作为case(因为Leaf是最小值的,这是唯一可能的case),我们可以确定函数将终止。
用迭代风格编写addOne需要什么?循环进入任意数量的分支会是什么样子?
此外,这种递归通常可以用“函子”来分解。我们可以通过定义将树变成函子:
instance Functor Tree where fmap f (Leaf a) = Leaf (f a)
fmap f (Branch a b) = Branch (fmap f a) (fmap f b)
和定义:
addOne' = fmap (+1)
我们可以提出其他递归方案,例如代数数据类型的变形(或折叠)。使用变形法,我们可以这样写:
addOne'' = cata go where
go (Leaf a) = Leaf (a + 1)
go (Branch a b) = Branch a b
其他回答
递归在某些情况下非常有用。例如,考虑查找阶乘的代码
int factorial ( int input )
{
int x, fact = 1;
for ( x = input; x > 1; x--)
fact *= x;
return fact;
}
现在用递归函数来考虑这个问题
int factorial ( int input )
{
if (input == 0)
{
return 1;
}
return input * factorial(input - 1);
}
通过观察这两个,我们可以看到递归很容易理解。 但如果不小心使用,它也会很容易出错。 假设如果我们错过了if (input == 0),那么代码将执行一段时间,并以堆栈溢出结束。
这取决于语言。在Java中,你应该使用循环。函数式语言优化递归。
递归有一个缺点,使用递归编写的算法的空间复杂度为O(n)。 而迭代方法的空间复杂度为O(1)。这是使用迭代而不是递归的优点。 那我们为什么要用递归呢?
见下文。
有时使用递归编写算法更容易,而使用迭代编写相同的算法略难。在这种情况下,如果您选择遵循迭代方法,您将不得不自己处理堆栈。
使用递归,每次“迭代”都会产生函数调用的成本,而使用循环,你通常只需要支付递增/递减的代价。因此,如果循环的代码并不比递归解决方案的代码复杂多少,循环通常会优于递归。
通常情况下,人们会期望性能损失在另一个方向上。递归调用会导致构建额外的堆栈帧;对此的惩罚各不相同。此外,在一些语言中,如Python(更准确地说,是在某些语言的某些实现中……),对于递归指定的任务,您可能很容易遇到堆栈限制,例如在树状数据结构中查找最大值。在这些情况下,你应该坚持使用循环。
编写好的递归函数可以在一定程度上降低性能损失,前提是你有一个优化尾部递归的编译器,等等(还要再次检查,确保函数真的是尾部递归——这是许多人都会犯的错误之一)。
除了“边缘”情况(高性能计算、非常大的递归深度等)之外,最好采用最清楚地表达您的意图、设计良好且可维护的方法。仅在确定需求后进行优化。