如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?


当前回答

递归在某些情况下非常有用。例如,考虑查找阶乘的代码

int factorial ( int input )
{
  int x, fact = 1;
  for ( x = input; x > 1; x--)
     fact *= x;
  return fact;
}

现在用递归函数来考虑这个问题

int factorial ( int input )
{
  if (input == 0)
  {
     return 1;
  }
  return input * factorial(input - 1);
}

通过观察这两个,我们可以看到递归很容易理解。 但如果不小心使用,它也会很容易出错。 假设如果我们错过了if (input == 0),那么代码将执行一段时间,并以堆栈溢出结束。

其他回答

If the iterations are atomic and orders of magnitude more expensive than pushing a new stack frame and creating a new thread and you have multiple cores and your runtime environment can use all of them, then a recursive approach could yield a huge performance boost when combined with multithreading. If the average number of iterations is not predictable then it might be a good idea to use a thread pool which will control thread allocation and prevent your process from creating too many threads and hogging the system.

例如,在某些语言中,存在递归多线程归并排序实现。

但同样,多线程可以与循环而不是递归一起使用,因此这种组合的工作效果取决于更多因素,包括操作系统及其线程分配机制。

In C++ if the recursive function is a templated one, then the compiler has more chance to optimize it, as all the type deduction and function instantiations will occur in compile time. Modern compilers can also inline the function if possible. So if one uses optimization flags like -O3 or -O2 in g++, then recursions may have the chance to be faster than iterations. In iterative codes, the compiler gets less chance to optimize it, as it is already in the more or less optimal state (if written well enough).

在我的例子中,我试图通过使用Armadillo矩阵对象,以递归和迭代的方式来实现矩阵求幂。算法可以在这里找到…https://en.wikipedia.org/wiki/Exponentiation_by_squaring。 我的函数是模板化的,我已经计算了1,000,000个12x12矩阵的10次方。我得到了以下结果:

iterative + optimisation flag -O3 -> 2.79.. sec
recursive + optimisation flag -O3 -> 1.32.. sec

iterative + No-optimisation flag  -> 2.83.. sec
recursive + No-optimisation flag  -> 4.15.. sec

这些结果是使用gcc-4.8与c++11标志(-std=c++11)和Armadillo 6.1与Intel mkl获得的。英特尔编译器也显示了类似的结果。

我认为在(非尾)递归中,每当函数被调用时,分配一个新的堆栈等都会受到性能影响(当然取决于语言)。

Your performance deteriorates when using recursion because calling a method, in any language, implies a lot of preparation: the calling code posts a return address, call parameters, some other context information such as processor registers might be saved somewhere, and at return time the called method posts a return value which is then retrieved by the caller, and any context information that was previously saved will be restored. the performance diff between an iterative and a recursive approach lies in the time these operations take.

从实现的角度来看,当处理调用上下文所需的时间与执行方法所需的时间相当时,您才真正开始注意到差异。如果递归方法的执行时间比调用上下文管理部分要长,那么就采用递归方法,因为代码通常更易于阅读和理解,而且不会注意到性能损失。否则,出于效率考虑,可以进行迭代。

我将通过“归纳”设计一个Haskell数据结构来回答你的问题,这是递归的一种“对偶”。然后我会展示这种对偶性是如何带来好的结果的。

我们为简单树引入一个类型:

data Tree a = Branch (Tree a) (Tree a)
            | Leaf a
            deriving (Eq)

我们可以把这个定义理解为“一棵树是一个分支(包含两棵树)或一个叶子(包含一个数据值)”。叶结点是一种最小的情况。如果树不是叶子,那么它一定是包含两棵树的复合树。这些是唯一的例子。

让我们做一个树:

example :: Tree Int
example = Branch (Leaf 1) 
                 (Branch (Leaf 2) 
                         (Leaf 3))

现在,让我们假设我们想给树中的每个值加1。我们可以通过调用:

addOne :: Tree Int -> Tree Int
addOne (Branch a b) = Branch (addOne a) (addOne b)
addOne (Leaf a)     = Leaf (a + 1)

首先,请注意这实际上是一个递归定义。它将数据构造函数Branch和Leaf作为case(因为Leaf是最小值的,这是唯一可能的case),我们可以确定函数将终止。

用迭代风格编写addOne需要什么?循环进入任意数量的分支会是什么样子?

此外,这种递归通常可以用“函子”来分解。我们可以通过定义将树变成函子:

instance Functor Tree where fmap f (Leaf a)     = Leaf (f a)
                            fmap f (Branch a b) = Branch (fmap f a) (fmap f b)

和定义:

addOne' = fmap (+1)

我们可以提出其他递归方案,例如代数数据类型的变形(或折叠)。使用变形法,我们可以这样写:

addOne'' = cata go where
           go (Leaf a) = Leaf (a + 1)
           go (Branch a b) = Branch a b