如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?


当前回答

Your performance deteriorates when using recursion because calling a method, in any language, implies a lot of preparation: the calling code posts a return address, call parameters, some other context information such as processor registers might be saved somewhere, and at return time the called method posts a return value which is then retrieved by the caller, and any context information that was previously saved will be restored. the performance diff between an iterative and a recursive approach lies in the time these operations take.

从实现的角度来看,当处理调用上下文所需的时间与执行方法所需的时间相当时,您才真正开始注意到差异。如果递归方法的执行时间比调用上下文管理部分要长,那么就采用递归方法,因为代码通常更易于阅读和理解,而且不会注意到性能损失。否则,出于效率考虑,可以进行迭代。

其他回答

循环可以提高程序的性能。递归可以为程序员带来性能上的提升。在你的情况下,选择哪个更重要!

递归在某些情况下非常有用。例如,考虑查找阶乘的代码

int factorial ( int input )
{
  int x, fact = 1;
  for ( x = input; x > 1; x--)
     fact *= x;
  return fact;
}

现在用递归函数来考虑这个问题

int factorial ( int input )
{
  if (input == 0)
  {
     return 1;
  }
  return input * factorial(input - 1);
}

通过观察这两个,我们可以看到递归很容易理解。 但如果不小心使用,它也会很容易出错。 假设如果我们错过了if (input == 0),那么代码将执行一段时间,并以堆栈溢出结束。

我将通过“归纳”设计一个Haskell数据结构来回答你的问题,这是递归的一种“对偶”。然后我会展示这种对偶性是如何带来好的结果的。

我们为简单树引入一个类型:

data Tree a = Branch (Tree a) (Tree a)
            | Leaf a
            deriving (Eq)

我们可以把这个定义理解为“一棵树是一个分支(包含两棵树)或一个叶子(包含一个数据值)”。叶结点是一种最小的情况。如果树不是叶子,那么它一定是包含两棵树的复合树。这些是唯一的例子。

让我们做一个树:

example :: Tree Int
example = Branch (Leaf 1) 
                 (Branch (Leaf 2) 
                         (Leaf 3))

现在,让我们假设我们想给树中的每个值加1。我们可以通过调用:

addOne :: Tree Int -> Tree Int
addOne (Branch a b) = Branch (addOne a) (addOne b)
addOne (Leaf a)     = Leaf (a + 1)

首先,请注意这实际上是一个递归定义。它将数据构造函数Branch和Leaf作为case(因为Leaf是最小值的,这是唯一可能的case),我们可以确定函数将终止。

用迭代风格编写addOne需要什么?循环进入任意数量的分支会是什么样子?

此外,这种递归通常可以用“函子”来分解。我们可以通过定义将树变成函子:

instance Functor Tree where fmap f (Leaf a)     = Leaf (f a)
                            fmap f (Branch a b) = Branch (fmap f a) (fmap f b)

和定义:

addOne' = fmap (+1)

我们可以提出其他递归方案,例如代数数据类型的变形(或折叠)。使用变形法,我们可以这样写:

addOne'' = cata go where
           go (Leaf a) = Leaf (a + 1)
           go (Branch a b) = Branch a b

递归?从哪里开始呢,维基会告诉你"这是以一种自相似的方式重复项目的过程"

在我做C语言的时候,c++的递归是上帝的恩赐,就像“尾递归”。您还会发现许多排序算法使用递归。快速排序示例:http://alienryderflex.com/quicksort/

递归就像任何其他算法一样,适用于特定的问题。也许你不能马上或经常找到一个用途,但会有问题,你会很高兴它可用。

这取决于“递归深度”。 这取决于函数调用开销对总执行时间的影响程度。

例如,用递归的方式计算经典阶乘是非常低效的,因为: —数据溢出风险 -栈溢出风险 —函数调用开销占执行时间的80%

同时开发一种最小-最大算法用于国际象棋游戏中的位置分析,该算法将分析后续的N步棋,可以在“分析深度”上以递归方式实现(正如我正在做的^_^)