如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?


当前回答

把它写成递归,或者作为练习,可能会很有趣。

但是,如果要在生产中使用该代码,则需要考虑堆栈溢出的可能性。

尾递归优化可以消除堆栈溢出,但是您是否想要经历这样的麻烦,并且您需要知道您可以指望它在您的环境中进行优化。

每次算法递归,数据大小或n减少了多少?

If you are reducing the size of data or n by half every time you recurse, then in general you don't need to worry about stack overflow. Say, if it needs to be 4,000 level deep or 10,000 level deep for the program to stack overflow, then your data size need to be roughly 24000 for your program to stack overflow. To put that into perspective, a biggest storage device recently can hold 261 bytes, and if you have 261 of such devices, you are only dealing with 2122 data size. If you are looking at all the atoms in the universe, it is estimated that it may be less than 284. If you need to deal with all the data in the universe and their states for every millisecond since the birth of the universe estimated to be 14 billion years ago, it may only be 2153. So if your program can handle 24000 units of data or n, you can handle all data in the universe and the program will not stack overflow. If you don't need to deal with numbers that are as big as 24000 (a 4000-bit integer), then in general you don't need to worry about stack overflow.

但是,如果每次递归时都将数据或n的大小减小一个常数,那么当n仅变为20000时,就会遇到堆栈溢出。也就是说,当n为1000时,程序运行良好,你认为程序很好,然后在未来的某个时候,当n为5000或20000时,程序堆栈溢出。

所以如果你有堆栈溢出的可能,试着让它成为一个迭代的解决方案。

其他回答

这取决于语言。在Java中,你应该使用循环。函数式语言优化递归。

这取决于“递归深度”。 这取决于函数调用开销对总执行时间的影响程度。

例如,用递归的方式计算经典阶乘是非常低效的,因为: —数据溢出风险 -栈溢出风险 —函数调用开销占执行时间的80%

同时开发一种最小-最大算法用于国际象棋游戏中的位置分析,该算法将分析后续的N步棋,可以在“分析深度”上以递归方式实现(正如我正在做的^_^)

使用递归,每次“迭代”都会产生函数调用的成本,而使用循环,你通常只需要支付递增/递减的代价。因此,如果循环的代码并不比递归解决方案的代码复杂多少,循环通常会优于递归。

通常情况下,人们会期望性能损失在另一个方向上。递归调用会导致构建额外的堆栈帧;对此的惩罚各不相同。此外,在一些语言中,如Python(更准确地说,是在某些语言的某些实现中……),对于递归指定的任务,您可能很容易遇到堆栈限制,例如在树状数据结构中查找最大值。在这些情况下,你应该坚持使用循环。

编写好的递归函数可以在一定程度上降低性能损失,前提是你有一个优化尾部递归的编译器,等等(还要再次检查,确保函数真的是尾部递归——这是许多人都会犯的错误之一)。

除了“边缘”情况(高性能计算、非常大的递归深度等)之外,最好采用最清楚地表达您的意图、设计良好且可维护的方法。仅在确定需求后进行优化。

我将通过“归纳”设计一个Haskell数据结构来回答你的问题,这是递归的一种“对偶”。然后我会展示这种对偶性是如何带来好的结果的。

我们为简单树引入一个类型:

data Tree a = Branch (Tree a) (Tree a)
            | Leaf a
            deriving (Eq)

我们可以把这个定义理解为“一棵树是一个分支(包含两棵树)或一个叶子(包含一个数据值)”。叶结点是一种最小的情况。如果树不是叶子,那么它一定是包含两棵树的复合树。这些是唯一的例子。

让我们做一个树:

example :: Tree Int
example = Branch (Leaf 1) 
                 (Branch (Leaf 2) 
                         (Leaf 3))

现在,让我们假设我们想给树中的每个值加1。我们可以通过调用:

addOne :: Tree Int -> Tree Int
addOne (Branch a b) = Branch (addOne a) (addOne b)
addOne (Leaf a)     = Leaf (a + 1)

首先,请注意这实际上是一个递归定义。它将数据构造函数Branch和Leaf作为case(因为Leaf是最小值的,这是唯一可能的case),我们可以确定函数将终止。

用迭代风格编写addOne需要什么?循环进入任意数量的分支会是什么样子?

此外,这种递归通常可以用“函子”来分解。我们可以通过定义将树变成函子:

instance Functor Tree where fmap f (Leaf a)     = Leaf (f a)
                            fmap f (Branch a b) = Branch (fmap f a) (fmap f b)

和定义:

addOne' = fmap (+1)

我们可以提出其他递归方案,例如代数数据类型的变形(或折叠)。使用变形法,我们可以这样写:

addOne'' = cata go where
           go (Leaf a) = Leaf (a + 1)
           go (Branch a b) = Branch a b