如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?


当前回答

把它写成递归,或者作为练习,可能会很有趣。

但是,如果要在生产中使用该代码,则需要考虑堆栈溢出的可能性。

尾递归优化可以消除堆栈溢出,但是您是否想要经历这样的麻烦,并且您需要知道您可以指望它在您的环境中进行优化。

每次算法递归,数据大小或n减少了多少?

If you are reducing the size of data or n by half every time you recurse, then in general you don't need to worry about stack overflow. Say, if it needs to be 4,000 level deep or 10,000 level deep for the program to stack overflow, then your data size need to be roughly 24000 for your program to stack overflow. To put that into perspective, a biggest storage device recently can hold 261 bytes, and if you have 261 of such devices, you are only dealing with 2122 data size. If you are looking at all the atoms in the universe, it is estimated that it may be less than 284. If you need to deal with all the data in the universe and their states for every millisecond since the birth of the universe estimated to be 14 billion years ago, it may only be 2153. So if your program can handle 24000 units of data or n, you can handle all data in the universe and the program will not stack overflow. If you don't need to deal with numbers that are as big as 24000 (a 4000-bit integer), then in general you don't need to worry about stack overflow.

但是,如果每次递归时都将数据或n的大小减小一个常数,那么当n仅变为20000时,就会遇到堆栈溢出。也就是说,当n为1000时,程序运行良好,你认为程序很好,然后在未来的某个时候,当n为5000或20000时,程序堆栈溢出。

所以如果你有堆栈溢出的可能,试着让它成为一个迭代的解决方案。

其他回答

这取决于“递归深度”。 这取决于函数调用开销对总执行时间的影响程度。

例如,用递归的方式计算经典阶乘是非常低效的,因为: —数据溢出风险 -栈溢出风险 —函数调用开销占执行时间的80%

同时开发一种最小-最大算法用于国际象棋游戏中的位置分析,该算法将分析后续的N步棋,可以在“分析深度”上以递归方式实现(正如我正在做的^_^)

对于可以分解成多个更小的部分的问题,递归比迭代更好。

例如,要制作一个递归斐波那契算法,您将fib(n)分解为fib(n-1)和fib(n-2),并计算这两部分。迭代只允许你一遍又一遍地重复一个函数。

然而,Fibonacci实际上是一个坏例子,我认为迭代实际上更有效。注意fib(n) = fib(n-1) + fib(n-2)和fib(n-1) = fib(n-2) + fib(n-3)。Fib (n-1)被计算了两次!

一个更好的例子是树的递归算法。分析父节点的问题可以分解为分析每个子节点的多个更小的问题。与斐波那契例子不同,较小的问题是相互独立的。

所以,对于那些可以分解成多个、更小、独立、相似问题的问题,递归比迭代更好。

Your performance deteriorates when using recursion because calling a method, in any language, implies a lot of preparation: the calling code posts a return address, call parameters, some other context information such as processor registers might be saved somewhere, and at return time the called method posts a return value which is then retrieved by the caller, and any context information that was previously saved will be restored. the performance diff between an iterative and a recursive approach lies in the time these operations take.

从实现的角度来看,当处理调用上下文所需的时间与执行方法所需的时间相当时,您才真正开始注意到差异。如果递归方法的执行时间比调用上下文管理部分要长,那么就采用递归方法,因为代码通常更易于阅读和理解,而且不会注意到性能损失。否则,出于效率考虑,可以进行迭代。

这取决于语言。在Java中,你应该使用循环。函数式语言优化递归。

使用递归,每次“迭代”都会产生函数调用的成本,而使用循环,你通常只需要支付递增/递减的代价。因此,如果循环的代码并不比递归解决方案的代码复杂多少,循环通常会优于递归。