如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?


当前回答

你必须记住,使用太深的递归,你会遇到堆栈溢出,这取决于允许的堆栈大小。为了防止这种情况,请确保提供一些基本情况,以结束递归。

其他回答

使用递归,每次“迭代”都会产生函数调用的成本,而使用循环,你通常只需要支付递增/递减的代价。因此,如果循环的代码并不比递归解决方案的代码复杂多少,循环通常会优于递归。

递归的内存开销更大,因为每次递归调用通常都需要将一个内存地址推入堆栈,以便稍后程序可以返回到那个地址。

尽管如此,在许多情况下,递归比循环更自然、更可读——比如在处理树的时候。在这些情况下,我建议坚持使用递归。

比较递归和迭代就像比较十字螺丝刀和一字螺丝刀。在大多数情况下,你可以拆卸任何一个平头的十字螺钉,但如果你使用专为该螺钉设计的螺丝刀,那就更容易了,对吧?

有些算法只是适合递归,因为它们的设计方式(斐波那契数列,遍历树状结构等)。递归使算法更简洁,更容易理解(因此可共享和可重用)。

此外,一些递归算法使用“惰性评估”,这使得它们比迭代算法更有效。这意味着它们只在需要的时候执行昂贵的计算,而不是每次循环运行时都执行。

这应该足够让你开始了。我也会给你找一些文章和例子。

链接1:Haskel vs PHP(递归vs迭代)

下面是一个程序员必须使用PHP处理大型数据集的示例。他展示了在Haskel中使用递归处理是多么容易,但由于PHP没有简单的方法来完成相同的方法,他被迫使用迭代来获得结果。

http://blog.webspecies.co.uk/2011-05-31/lazy-evaluation-with-php.html

链接2:掌握递归

递归的坏名声大多来自于命令式语言的高成本和低效率。本文的作者讨论了如何优化递归算法,使其更快、更有效。他还介绍了如何将传统循环转换为递归函数,以及使用尾部递归的好处。我认为他的结束语总结了我的一些要点:

递归编程为程序员提供了一种更好的组织方式 以一种既可维护又逻辑一致的方式编写代码。” https://developer.ibm.com/articles/l-recurs/

链接3:递归比循环快吗?(回答)

下面是一个与你的问题类似的stackoverflow问题的答案链接。作者指出,许多与递归或循环相关的基准测试都是特定于语言的。命令式语言通常使用循环更快,使用递归更慢,函数式语言反之亦然。我想从这个链接中得到的主要观点是,在语言不可知论/情境盲目的意义上回答这个问题是非常困难的。

递归比循环快吗?

据我所知,Perl没有优化尾递归调用,但是您可以伪造它。

sub f{
  my($l,$r) = @_;

  if( $l >= $r ){
    return $l;
  } else {

    # return f( $l+1, $r );

    @_ = ( $l+1, $r );
    goto &f;

  }
}

第一次调用时,它将在堆栈上分配空间。然后它将改变它的参数,并重新启动子例程,而不向堆栈添加任何东西。因此,它会假装从未调用过自己,将其转变为一个迭代过程。

注意,没有“my @_;”或“local @_;”,如果你这样做,它将不再工作。

我将通过“归纳”设计一个Haskell数据结构来回答你的问题,这是递归的一种“对偶”。然后我会展示这种对偶性是如何带来好的结果的。

我们为简单树引入一个类型:

data Tree a = Branch (Tree a) (Tree a)
            | Leaf a
            deriving (Eq)

我们可以把这个定义理解为“一棵树是一个分支(包含两棵树)或一个叶子(包含一个数据值)”。叶结点是一种最小的情况。如果树不是叶子,那么它一定是包含两棵树的复合树。这些是唯一的例子。

让我们做一个树:

example :: Tree Int
example = Branch (Leaf 1) 
                 (Branch (Leaf 2) 
                         (Leaf 3))

现在,让我们假设我们想给树中的每个值加1。我们可以通过调用:

addOne :: Tree Int -> Tree Int
addOne (Branch a b) = Branch (addOne a) (addOne b)
addOne (Leaf a)     = Leaf (a + 1)

首先,请注意这实际上是一个递归定义。它将数据构造函数Branch和Leaf作为case(因为Leaf是最小值的,这是唯一可能的case),我们可以确定函数将终止。

用迭代风格编写addOne需要什么?循环进入任意数量的分支会是什么样子?

此外,这种递归通常可以用“函子”来分解。我们可以通过定义将树变成函子:

instance Functor Tree where fmap f (Leaf a)     = Leaf (f a)
                            fmap f (Branch a b) = Branch (fmap f a) (fmap f b)

和定义:

addOne' = fmap (+1)

我们可以提出其他递归方案,例如代数数据类型的变形(或折叠)。使用变形法,我们可以这样写:

addOne'' = cata go where
           go (Leaf a) = Leaf (a + 1)
           go (Branch a b) = Branch a b