如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?


当前回答

递归比迭代的任何可能定义都更简单(因此也更基本)。你可以只用一对组合子定义一个图灵完备系统(是的,在这样的系统中,甚至递归本身也是一个衍生概念)。Lambda演算是一个同样强大的基本系统,具有递归函数。但是如果你想正确地定义一个迭代,你需要更多的原语来开始。

至于代码——不,递归代码实际上比纯迭代代码更容易理解和维护,因为大多数数据结构都是递归的。当然,为了正确使用它,至少需要一种支持高阶函数和闭包的语言,以简洁的方式获得所有标准的组合子和迭代器。当然,在c++中,复杂的递归解决方案可能看起来有点丑,除非你是fc++的铁杆用户。

其他回答

递归?从哪里开始呢,维基会告诉你"这是以一种自相似的方式重复项目的过程"

在我做C语言的时候,c++的递归是上帝的恩赐,就像“尾递归”。您还会发现许多排序算法使用递归。快速排序示例:http://alienryderflex.com/quicksort/

递归就像任何其他算法一样,适用于特定的问题。也许你不能马上或经常找到一个用途,但会有问题,你会很高兴它可用。

如果我们使用循环而不是 递归或者反之,在算法中两者都可以达到相同的目的?”

Usually yes if you are writing in a imperative language iteration will run faster than recursion, the performance hit is minimized in problems where the iterative solution requires manipulating Stacks and popping items off of a stack due to the recursive nature of the problem. There are a lot of times where the recursive implementation is much easier to read because the code is much shorter, so you do want to consider maintainability. Especailly in cases where the problem has a recursive nature. So take for example:

河内塔的递归实现:

def TowerOfHanoi(n , source, destination, auxiliary):
    if n==1:
        print ("Move disk 1 from source",source,"to destination",destination)
        return
    TowerOfHanoi(n-1, source, auxiliary, destination)
    print ("Move disk",n,"from source",source,"to destination",destination)
    TowerOfHanoi(n-1, auxiliary, destination, source)

相当短,很容易读。将其与对应的迭代TowerOfHanoi进行比较:

# Python3 program for iterative Tower of Hanoi
import sys
 
# A structure to represent a stack
class Stack:
    # Constructor to set the data of
    # the newly created tree node
    def __init__(self, capacity):
        self.capacity = capacity
        self.top = -1
        self.array = [0]*capacity
 
# function to create a stack of given capacity.
def createStack(capacity):
    stack = Stack(capacity)
    return stack
  
# Stack is full when top is equal to the last index
def isFull(stack):
    return (stack.top == (stack.capacity - 1))
   
# Stack is empty when top is equal to -1
def isEmpty(stack):
    return (stack.top == -1)
   
# Function to add an item to stack.
# It increases top by 1
def push(stack, item):
    if(isFull(stack)):
        return
    stack.top+=1
    stack.array[stack.top] = item
   
# Function to remove an item from stack.
# It decreases top by 1
def Pop(stack):
    if(isEmpty(stack)):
        return -sys.maxsize
    Top = stack.top
    stack.top-=1
    return stack.array[Top]
   
# Function to implement legal
# movement between two poles
def moveDisksBetweenTwoPoles(src, dest, s, d):
    pole1TopDisk = Pop(src)
    pole2TopDisk = Pop(dest)
 
    # When pole 1 is empty
    if (pole1TopDisk == -sys.maxsize):
        push(src, pole2TopDisk)
        moveDisk(d, s, pole2TopDisk)
       
    # When pole2 pole is empty
    else if (pole2TopDisk == -sys.maxsize):
        push(dest, pole1TopDisk)
        moveDisk(s, d, pole1TopDisk)
       
    # When top disk of pole1 > top disk of pole2
    else if (pole1TopDisk > pole2TopDisk):
        push(src, pole1TopDisk)
        push(src, pole2TopDisk)
        moveDisk(d, s, pole2TopDisk)
       
    # When top disk of pole1 < top disk of pole2
    else:
        push(dest, pole2TopDisk)
        push(dest, pole1TopDisk)
        moveDisk(s, d, pole1TopDisk)
   
# Function to show the movement of disks
def moveDisk(fromPeg, toPeg, disk):
    print("Move the disk", disk, "from '", fromPeg, "' to '", toPeg, "'")
   
# Function to implement TOH puzzle
def tohIterative(num_of_disks, src, aux, dest):
    s, d, a = 'S', 'D', 'A'
   
    # If number of disks is even, then interchange
    # destination pole and auxiliary pole
    if (num_of_disks % 2 == 0):
        temp = d
        d = a
        a = temp
    total_num_of_moves = int(pow(2, num_of_disks) - 1)
   
    # Larger disks will be pushed first
    for i in range(num_of_disks, 0, -1):
        push(src, i)
   
    for i in range(1, total_num_of_moves + 1):
        if (i % 3 == 1):
            moveDisksBetweenTwoPoles(src, dest, s, d)
   
        else if (i % 3 == 2):
            moveDisksBetweenTwoPoles(src, aux, s, a)
   
        else if (i % 3 == 0):
            moveDisksBetweenTwoPoles(aux, dest, a, d)
 
# Input: number of disks
num_of_disks = 3
 
# Create three stacks of size 'num_of_disks'
# to hold the disks
src = createStack(num_of_disks)
dest = createStack(num_of_disks)
aux = createStack(num_of_disks)
 
tohIterative(num_of_disks, src, aux, dest)

Now the first one is way easier to read because suprise suprise shorter code is usually easier to understand than code that is 10 times longer. Sometimes you want to ask yourself is the extra performance gain really worth it? The amount of hours wasted debugging the code. Is the iterative TowerOfHanoi faster than the Recursive TowerOfHanoi? Probably, but not by a big margin. Would I like to program Recursive problems like TowerOfHanoi using iteration? Hell no. Next we have another recursive function the Ackermann function: Using recursion:

    if m == 0:
        # BASE CASE
        return n + 1
    elif m > 0 and n == 0:
        # RECURSIVE CASE
        return ackermann(m - 1, 1)
    elif m > 0 and n > 0:
        # RECURSIVE CASE
        return ackermann(m - 1, ackermann(m, n - 1))

使用迭代:

callStack = [{'m': 2, 'n': 3, 'indentation': 0, 'instrPtr': 'start'}]
returnValue = None

while len(callStack) != 0:
    m = callStack[-1]['m']
    n = callStack[-1]['n']
    indentation = callStack[-1]['indentation']
    instrPtr = callStack[-1]['instrPtr']

    if instrPtr == 'start':
        print('%sackermann(%s, %s)' % (' ' * indentation, m, n))

        if m == 0:
            # BASE CASE
            returnValue = n + 1
            callStack.pop()
            continue
        elif m > 0 and n == 0:
            # RECURSIVE CASE
            callStack[-1]['instrPtr'] = 'after first recursive case'
            callStack.append({'m': m - 1, 'n': 1, 'indentation': indentation + 1, 'instrPtr': 'start'})
            continue
        elif m > 0 and n > 0:
            # RECURSIVE CASE
            callStack[-1]['instrPtr'] = 'after second recursive case, inner call'
            callStack.append({'m': m, 'n': n - 1, 'indentation': indentation + 1, 'instrPtr': 'start'})
            continue
    elif instrPtr == 'after first recursive case':
        returnValue = returnValue
        callStack.pop()
        continue
    elif instrPtr == 'after second recursive case, inner call':
        callStack[-1]['innerCallResult'] = returnValue
        callStack[-1]['instrPtr'] = 'after second recursive case, outer call'
        callStack.append({'m': m - 1, 'n': returnValue, 'indentation': indentation + 1, 'instrPtr': 'start'})
        continue
    elif instrPtr == 'after second recursive case, outer call':
        returnValue = returnValue
        callStack.pop()
        continue
print(returnValue)

再说一次,递归实现更容易理解。所以我的结论是,如果问题本质上是递归的,需要操作堆栈中的项,就使用递归。

递归和迭代取决于您想要实现的业务逻辑,尽管在大多数情况下可以互换使用。大多数开发人员选择递归,因为它更容易理解。

通常情况下,人们会期望性能损失在另一个方向上。递归调用会导致构建额外的堆栈帧;对此的惩罚各不相同。此外,在一些语言中,如Python(更准确地说,是在某些语言的某些实现中……),对于递归指定的任务,您可能很容易遇到堆栈限制,例如在树状数据结构中查找最大值。在这些情况下,你应该坚持使用循环。

编写好的递归函数可以在一定程度上降低性能损失,前提是你有一个优化尾部递归的编译器,等等(还要再次检查,确保函数真的是尾部递归——这是许多人都会犯的错误之一)。

除了“边缘”情况(高性能计算、非常大的递归深度等)之外,最好采用最清楚地表达您的意图、设计良好且可维护的方法。仅在确定需求后进行优化。

在许多情况下,由于缓存提高了性能,递归更快。例如,这是一个使用传统归并例程的归并排序的迭代版本。它将比递归实现运行得慢,因为缓存改进了性能。

迭代实现

public static void sort(Comparable[] a)
{
    int N = a.length;
    aux = new Comparable[N];
    for (int sz = 1; sz < N; sz = sz+sz)
        for (int lo = 0; lo < N-sz; lo += sz+sz)
            merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
}

递归实现

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
    if (hi <= lo) return;
    int mid = lo + (hi - lo) / 2;
    sort(a, aux, lo, mid);
    sort(a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}

PS -这是Kevin Wayne教授(普林斯顿大学)在Coursera上的算法课程上讲的。