如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
当前回答
这在Setun电脑上很容易实现。
要把一个整数除3,右移1位。
不过,我不确定在这样的平台上是否有可能实现一个符合标准的C编译器。我们可能需要稍微扩展一下规则,比如将“至少8位”解释为“能够保存至少从-128到+127的整数”。
其他回答
愚蠢的情况需要愚蠢的解决方案:
#include <stdio.h>
#include <stdlib.h>
int main()
{
FILE * fp=fopen("temp.dat","w+b");
int number=12346;
int divisor=3;
char * buf = calloc(number,1);
fwrite(buf,number,1,fp);
rewind(fp);
int result=fread(buf,divisor,number,fp);
printf("%d / %d = %d", number, divisor, result);
free(buf);
fclose(fp);
return 0;
}
如果还需要小数部分,只需将result声明为double,并将fmod(number,除数)的结果添加到它。
解释它是如何工作的
fwrite写入number字节(在上面的例子中number为123456)。 “倒带”将文件指针重置到文件的前面。 Fread从文件中读取长度为除数的最多数量的“记录”,并返回它所读取的元素的数量。
如果你写30个字节,然后以3为单位读回文件,你会得到10个“单位”。30 / 3 = 10
这应该适用于任何除数,而不仅仅是3。目前仅适用于unsigned,但将其扩展到signed应该没有那么困难。
#include <stdio.h>
unsigned sub(unsigned two, unsigned one);
unsigned bitdiv(unsigned top, unsigned bot);
unsigned sub(unsigned two, unsigned one)
{
unsigned bor;
bor = one;
do {
one = ~two & bor;
two ^= bor;
bor = one<<1;
} while (one);
return two;
}
unsigned bitdiv(unsigned top, unsigned bot)
{
unsigned result, shift;
if (!bot || top < bot) return 0;
for(shift=1;top >= (bot<<=1); shift++) {;}
bot >>= 1;
for (result=0; shift--; bot >>= 1 ) {
result <<=1;
if (top >= bot) {
top = sub(top,bot);
result |= 1;
}
}
return result;
}
int main(void)
{
unsigned arg,val;
for (arg=2; arg < 40; arg++) {
val = bitdiv(arg,3);
printf("Arg=%u Val=%u\n", arg, val);
}
return 0;
}
你可以考虑用图或树状结构来解决这个问题。基本上生成的顶点数与要除以3的数一样多。然后继续将每个未配对的顶点与其他两个顶点配对。
粗糙的伪代码:
function divide(int num)
while(num!=0)
Add a new vertice to vertiexList.
num--
quotient = 0
for each in vertexList(lets call this vertex A)
if vertexList not empty
Add an edge between A and another vertex(say B)
else
your Remainder is 1 and Quotient is quotient
if vertexList not empty
Add an edge between A and another vertex(say C)
else
your remainder is 2 and Quotient is quotient
quotient++
remove A, B, C from vertexList
Remainder is 0 and Quotient is quotient
这显然是可以优化的,复杂度取决于你的数字有多大,但它应该工作,只要你能做++和——。 这就像数更酷的东西一样。
很有趣的是,没有人回答一个泛泛的划分:
/* For the given integer find the position of MSB */
int find_msb_loc(unsigned int n)
{
if (n == 0)
return 0;
int loc = sizeof(n) * 8 - 1;
while (!(n & (1 << loc)))
loc--;
return loc;
}
/* Assume both a and b to be positive, return a/b */
int divide_bitwise(const unsigned int a, const unsigned int b)
{
int int_size = sizeof(unsigned int) * 8;
int b_msb_loc = find_msb_loc(b);
int d = 0; // dividend
int r = 0; // reminder
int t_a = a;
int t_a_msb_loc = find_msb_loc(t_a);
int t_b = b << (t_a_msb_loc - b_msb_loc);
int i;
for(i = t_a_msb_loc; i >= b_msb_loc; i--) {
if (t_a > t_b) {
d = (d << 1) | 0x1;
t_a -= t_b; // Not a bitwise operatiion
t_b = t_b >> 1;
}
else if (t_a == t_b) {
d = (d << 1) | 0x1;
t_a = 0;
}
else { // t_a < t_b
d = d << 1;
t_b = t_b >> 1;
}
}
r = t_a;
printf("==> %d %d\n", d, r);
return d;
}
按位加法已经在其中一个答案中给出,所以跳过它。
使用fma()库函数的解决方案,适用于任何正数:
#include <stdio.h>
#include <math.h>
int main()
{
int number = 8;//Any +ve no.
int temp = 3, result = 0;
while(temp <= number){
temp = fma(temp, 1, 3); //fma(a, b, c) is a library function and returns (a*b) + c.
result = fma(result, 1, 1);
}
printf("\n\n%d divided by 3 = %d\n", number, result);
}
请看我的另一个答案。