如何将一个数除3而不使用*、/、+、-、%等运算符?

号码可以有签名,也可以没有签名。


当前回答

#include <stdio.h>

typedef struct { char a,b,c; } Triple;

unsigned long div3(Triple *v, char *r) {
  if ((long)v <= 2)  
    return (unsigned long)r;
  return div3(&v[-1], &r[1]);
}

int main() {
  unsigned long v = 21; 
  int r = div3((Triple*)v, 0); 
  printf("%ld / 3 = %d\n", v, r); 
  return 0;
}

其他回答

如果我们认为__div__不是正字法上的/

def divBy3(n):
    return n.__div__(3)

print divBy3(9), 'or', 9//3

愚蠢的情况需要愚蠢的解决方案:

#include <stdio.h>
#include <stdlib.h>

int main()
{
    FILE * fp=fopen("temp.dat","w+b");
    int number=12346;
    int divisor=3;
    char * buf = calloc(number,1);
    fwrite(buf,number,1,fp);
    rewind(fp);
    int result=fread(buf,divisor,number,fp);
    printf("%d / %d = %d", number, divisor, result);
    free(buf);
    fclose(fp);
    return 0;
}

如果还需要小数部分,只需将result声明为double,并将fmod(number,除数)的结果添加到它。

解释它是如何工作的

fwrite写入number字节(在上面的例子中number为123456)。 “倒带”将文件指针重置到文件的前面。 Fread从文件中读取长度为除数的最多数量的“记录”,并返回它所读取的元素的数量。

如果你写30个字节,然后以3为单位读回文件,你会得到10个“单位”。30 / 3 = 10

要将一个数除以3,而不使用乘法、除法、余数、减法或加法操作,在汇编编程语言中,惟一可用的指令是LEA(地址有效负载)、SHL(向左移动)和SHR(向右移动)。

在这个解决方案中,我没有使用与运算符+ - * /%相关的操作

我假设有输出数字在定点格式(16位整数部分和16位小数部分)和输入数字的类型是短int;但是,我已经近似输出的数量,因为我只能信任整数部分,因此我返回一个短int类型的值。

65536/6是固定点值,相当于1/3浮点数,等于21845。

21845 = 16384 + 4096 + 1024 + 256 + 64 + 16 + 4 + 1.

因此,要用1/3(21845)来做乘法,我使用指令LEA和SHL。

short int DivideBy3( short int num )
//In : eax= 16 Bit short int input number (N)
//Out: eax= N/3 (32 Bit fixed point output number
//          (Bit31-Bit16: integer part, Bit15-Bit0: digits after comma)
{
   __asm
   {
      movsx eax, num          // Get first argument

      // 65536 / 3 = 21845 = 16384 + 4096 + 1024 + 256 + 64 + 16 + 4 + 1

      lea edx,[4*eax+eax]     // EDX= EAX * 5
      shl eax,4
      lea edx,[eax+edx]       // EDX= EDX + EAX * 16
      shl eax,2
      lea edx,[eax+edx]       // EDX= EDX + EAX * 64
      shl eax,2
      lea edx,[eax+edx]       // EDX= EDX + EAX * 256
      shl eax,2
      lea edx,[eax+edx]       // EDX= EDX + EAX * 1024
      shl eax,2
      lea edx,[eax+edx]       // EDX= EDX + EAX * 4096
      shl eax,2
      lea edx,[eax+edx+08000h] // EDX= EDX + EAX * 16384

      shr edx,010h
      movsx eax,dx

   }
   // Return with result in EAX
}

它也适用于负数;结果具有正数的最小近似值(逗号后的最后一位数字为-1)。

如果您不打算使用运算符+ - * /%来执行除3的操作,但可以使用与它们相关的操作,我建议另一种解决方案。

int DivideBy3Bis( short int num )
//In : eax= 16 Bit short int input number (N)
//Out: eax= N/3 (32 Bit fixed point output number
//          (Bit31-Bit16: integer part, Bit15-Bit0: digits after comma)
{
   __asm
   {
      movsx   eax, num        // Get first argument

      mov     edx,21845
      imul    edx
   }
   // Return with result in EAX
}

这是Python中的,基本上,字符串比较和一个状态机。

def divide_by_3(input):
  to_do = {}
  enque_index = 0
  zero_to_9 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
  leave_over = 0
  for left_over in (0, 1, 2):
    for digit in zero_to_9:
      # left_over, digit => enque, leave_over
      to_do[(left_over, digit)] = (zero_to_9[enque_index], leave_over)
      if leave_over == 0:
        leave_over = 1
      elif leave_over == 1:
        leave_over = 2
      elif leave_over == 2 and enque_index != 9:
        leave_over = 0
        enque_index = (1, 2, 3, 4, 5, 6, 7, 8, 9)[enque_index]
  answer_q = []
  left_over = 0
  digits = list(str(input))
  if digits[0] == "-":
    answer_q.append("-")
  digits = digits[1:]
  for digit in digits:
    enque, left_over = to_do[(left_over, int(digit))]
    if enque or len(answer_q):
      answer_q.append(enque)
  answer = 0
  if len(answer_q):
    answer = int("".join([str(a) for a in answer_q]))
  return answer

为什么我们不直接用在大学里学过的定义呢?结果可能效率低,但很清楚,因为乘法只是递归的减法,减法是加法,那么加法可以通过递归的异或/和逻辑端口组合来执行。

#include <stdio.h>

int add(int a, int b){
   int rc;
   int carry;
   rc = a ^ b; 
   carry = (a & b) << 1;
   if (rc & carry) 
      return add(rc, carry);
   else
      return rc ^ carry; 
}

int sub(int a, int b){
   return add(a, add(~b, 1)); 
}

int div( int D, int Q )
{
/* lets do only positive and then
 * add the sign at the end
 * inversion needs to be performed only for +Q/-D or -Q/+D
 */
   int result=0;
   int sign=0;
   if( D < 0 ) {
      D=sub(0,D);
      if( Q<0 )
         Q=sub(0,Q);
      else
         sign=1;
   } else {
      if( Q<0 ) {
         Q=sub(0,Q);
         sign=1;
      } 
   }
   while(D>=Q) {
      D = sub( D, Q );
      result++;
   }
/*
* Apply sign
*/
   if( sign )
      result = sub(0,result);
   return result;
}

int main( int argc, char ** argv ) 
{
    printf( "2 plus 3=%d\n", add(2,3) );
    printf( "22 div 3=%d\n", div(22,3) );
    printf( "-22 div 3=%d\n", div(-22,3) );
    printf( "-22 div -3=%d\n", div(-22,-3) );
    printf( "22 div 03=%d\n", div(22,-3) );
    return 0;
}

有人说……首先让它工作。注意,该算法应该适用于负Q…