如何将一个数除3而不使用*、/、+、-、%等运算符?

号码可以有签名,也可以没有签名。


当前回答

要将一个32位数字除以3,可以将其乘以0x55555556,然后取64位结果的前32位。

现在剩下要做的就是使用位运算和移位来实现乘法…

其他回答

要将一个32位数字除以3,可以将其乘以0x55555556,然后取64位结果的前32位。

现在剩下要做的就是使用位运算和移位来实现乘法…

int div3(int x)
{
  int reminder = abs(x);
  int result = 0;
  while(reminder >= 3)
  {
     result++;

     reminder--;
     reminder--;
     reminder--;
  }
  return result;
}

我会用这段代码除所有正数,非浮点数。基本上你要把除数位向左对齐以匹配被除数位。对于被除数的每一段(除数的大小),你想要检查是否被除数的每一段大于除数,然后你想要左Shift,然后在第一个注册器中OR。这个概念最初是在2004年创建的(我相信是斯坦福大学),这里是一个C版本,它使用了这个概念。注:(我做了一点修改)

int divide(int a, int b)
{
    int c = 0, r = 32, i = 32, p = a + 1;
    unsigned long int d = 0x80000000;

    while ((b & d) == 0)
    {
        d >>= 1;
        r--;
    }

    while (p > a)
    {
        c <<= 1;
        p = (b >> i--) & ((1 << r) - 1);
        if (p >= a)
            c |= 1;
    }
    return c; //p is remainder (for modulus)
}

使用示例:

int n = divide( 3, 6); //outputs 2

第一:

x/3 = (x/4) / (1-1/4)

然后求x/(1 - y)

x/(1-1/y)
  = x * (1+y) / (1-y^2)
  = x * (1+y) * (1+y^2) / (1-y^4)
  = ...
  = x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i)) / (1-y^(2^(i+i))
  = x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i))

y = 1/4:

int div3(int x) {
    x <<= 6;    // need more precise
    x += x>>2;  // x = x * (1+(1/2)^2)
    x += x>>4;  // x = x * (1+(1/2)^4)
    x += x>>8;  // x = x * (1+(1/2)^8)
    x += x>>16; // x = x * (1+(1/2)^16)
    return (x+1)>>8; // as (1-(1/2)^32) very near 1,
                     // we plus 1 instead of div (1-(1/2)^32)
}

虽然它使用了+,但有人已经实现了按位操作的add。

如果我们认为__div__不是正字法上的/

def divBy3(n):
    return n.__div__(3)

print divBy3(9), 'or', 9//3