我想从

['$a', '$b', '$c', '$d', '$e']

to

['a', 'b', 'c', 'd', 'e']

当前回答

如果已经有新列名的列表,可以尝试以下操作:

new_cols = ['a', 'b', 'c', 'd', 'e']
new_names_map = {df.columns[i]:new_cols[i] for i in range(len(new_cols))}

df.rename(new_names_map, axis=1, inplace=True)

其他回答

如“使用文本数据:

df.columns = df.columns.str.replace('$', '')

如果您只想删除“$”符号,请使用以下代码

df.columns = pd.Series(df.columns.str.replace("$", ""))

可以将lstrip或strip方法与索引一起使用:

df.columns = df.columns.str.lstrip('$')

or

cols = ['$a', '$b', '$c', '$d', '$e']
pd.Series(cols).str.lstrip('$').tolist()

输出:

['a', 'b', 'c', 'd', 'e']

另一个选项是使用正则表达式重命名:

import pandas as pd
import re

df = pd.DataFrame({'$a':[1,2], '$b':[3,4], '$c':[5,6]})

df = df.rename(columns=lambda x: re.sub('\$','',x))
>>> df
   a  b  c
0  1  3  5
1  2  4  6

重命名方法可以采用一个函数,例如:

In [11]: df.columns
Out[11]: Index([u'$a', u'$b', u'$c', u'$d', u'$e'], dtype=object)

In [12]: df.rename(columns=lambda x: x[1:], inplace=True)

In [13]: df.columns
Out[13]: Index([u'a', u'b', u'c', u'd', u'e'], dtype=object)