我想从

['$a', '$b', '$c', '$d', '$e']

to

['a', 'b', 'c', 'd', 'e']

当前回答

可以将lstrip或strip方法与索引一起使用:

df.columns = df.columns.str.lstrip('$')

or

cols = ['$a', '$b', '$c', '$d', '$e']
pd.Series(cols).str.lstrip('$').tolist()

输出:

['a', 'b', 'c', 'd', 'e']

其他回答

除了已经提供的解决方案之外,您还可以在读取文件时替换所有列。我们可以使用names和header=0来实现这一点。

首先,我们创建一个我们喜欢用作列名的名称列表:

import pandas as pd

ufo_cols = ['city', 'color reported', 'shape reported', 'state', 'time']
ufo.columns = ufo_cols

ufo = pd.read_csv('link to the file you are using', names = ufo_cols, header = 0)

在这种情况下,所有列名都将替换为列表中的名称。

df.rename(index=str, columns={'A':'a', 'B':'b'})

pandas.DataFrame.rename

由于您只想删除所有列名中的$符号,因此只需执行以下操作:

df = df.rename(columns=lambda x: x.replace('$', ''))

OR

df.rename(columns=lambda x: x.replace('$', ''), inplace=True)

重命名方法可以采用一个函数,例如:

In [11]: df.columns
Out[11]: Index([u'$a', u'$b', u'$c', u'$d', u'$e'], dtype=object)

In [12]: df.rename(columns=lambda x: x[1:], inplace=True)

In [13]: df.columns
Out[13]: Index([u'a', u'b', u'c', u'd', u'e'], dtype=object)

让我们通过一个小例子来理解重命名。。。

使用映射重命名列:df=pd.DataFrame({“A”:[1,2,3],“B”:[4,5,6]})#创建列名为A和B的dfdf.reame({“A”:“new_A”,“B”:“new_B”},axis='columns',inplace=True)#用'new_A'重命名列A,用'new_B'重命名列B输出:新a新b0 1 41 2 52 3 6使用映射重命名索引/Row_Name:df.reame({0:“x”,1:“y”,2:“z”},axis='index',inplace=True)#行名称被'x'、'y'和'z'替换。输出:新a新bx 142015年z 3 6