我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
当前回答
由于您只想删除所有列名中的$符号,因此只需执行以下操作:
df = df.rename(columns=lambda x: x.replace('$', ''))
OR
df.rename(columns=lambda x: x.replace('$', ''), inplace=True)
其他回答
df = pd.DataFrame({'$a': [1], '$b': [1], '$c': [1], '$d': [1], '$e': [1]})
如果新列列表的顺序与现有列的顺序相同,则分配很简单:
new_cols = ['a', 'b', 'c', 'd', 'e']
df.columns = new_cols
>>> df
a b c d e
0 1 1 1 1 1
如果您有一个将旧列名键入到新列名的字典,可以执行以下操作:
d = {'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}
df.columns = df.columns.map(lambda col: d[col]) # Or `.map(d.get)` as pointed out by @PiRSquared.
>>> df
a b c d e
0 1 1 1 1 1
如果你没有列表或字典映射,你可以通过列表理解去掉前导$符号:
df.columns = [col[1:] if col[0] == '$' else col for col in df]
Use:
old_names = ['$a', '$b', '$c', '$d', '$e']
new_names = ['a', 'b', 'c', 'd', 'e']
df.rename(columns=dict(zip(old_names, new_names)), inplace=True)
这样,您可以根据需要手动编辑new_names。当您只需要重命名几个列来纠正拼写错误、重音、删除特殊字符等时,它非常有用。
许多panda函数都有一个就地参数。当设置为True时,转换将直接应用于调用它的数据帧。例如:
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df.rename(columns={'$a': 'a'}, inplace=True)
df.columns
>>> Index(['a', '$b'], dtype='object')
或者,在某些情况下,您希望保留原始数据帧。如果创建数据帧是一项昂贵的任务,我经常看到人们陷入这种情况。例如,如果创建数据帧需要查询雪花数据库。在这种情况下,只需确保将inplace参数设置为False。
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df2 = df.rename(columns={'$a': 'a'}, inplace=False)
df.columns
>>> Index(['$a', '$b'], dtype='object')
df2.columns
>>> Index(['a', '$b'], dtype='object')
如果这些类型的转换是您经常做的,那么您还可以研究一些不同的panda GUI工具。我是一个叫做水户的人的创造者。它是一个电子表格,可以自动将您的编辑转换为python代码。
我的方法是通用的,您可以通过逗号分隔分隔符=variable来添加额外的分隔符,并对其进行未来验证。
工作代码:
import pandas as pd
import re
df = pd.DataFrame({'$a':[1,2], '$b': [3,4],'$c':[5,6], '$d': [7,8], '$e': [9,10]})
delimiters = '$'
matchPattern = '|'.join(map(re.escape, delimiters))
df.columns = [re.split(matchPattern, i)[1] for i in df.columns ]
输出:
>>> df
$a $b $c $d $e
0 1 3 5 7 9
1 2 4 6 8 10
>>> df
a b c d e
0 1 3 5 7 9
1 2 4 6 8 10
另一个选项是使用正则表达式重命名:
import pandas as pd
import re
df = pd.DataFrame({'$a':[1,2], '$b':[3,4], '$c':[5,6]})
df = df.rename(columns=lambda x: re.sub('\$','',x))
>>> df
a b c
0 1 3 5
1 2 4 6