我想从

['$a', '$b', '$c', '$d', '$e']

to

['a', 'b', 'c', 'd', 'e']

当前回答

由于您只想删除所有列名中的$符号,因此只需执行以下操作:

df = df.rename(columns=lambda x: x.replace('$', ''))

OR

df.rename(columns=lambda x: x.replace('$', ''), inplace=True)

其他回答

假设您的数据集名称为df,df具有。

df = ['$a', '$b', '$c', '$d', '$e']`

所以,要重命名这些,我们只需这样做。

df.columns = ['a','b','c','d','e']

Use:

old_names = ['$a', '$b', '$c', '$d', '$e'] 
new_names = ['a', 'b', 'c', 'd', 'e']
df.rename(columns=dict(zip(old_names, new_names)), inplace=True)

这样,您可以根据需要手动编辑new_names。当您只需要重命名几个列来纠正拼写错误、重音、删除特殊字符等时,它非常有用。

一个简单而“有趣”(和蟒蛇?)的解决方案:

df.rename(columns={x: x.replace('$', '') for x in df.columns})

哪里:

df = pd.DataFrame(columns=['$a', '$b', '$c', '$d', '$e'])

步骤:

获取DataFrame的列作为列表:

df.columns

在DataFrames中重命名的方法:

df.rename()

属性以指定要重命名列:

columns={}

在字典中,您需要指定要重命名的列(在每个键中)以及它们将获得的新名称(每个值)

{'old_col_name': 'new_col_name', ...}

由于您的更改遵循一种模式,为了删除每列中的$字符,我们可以使用字典理解:

{x: x.replace('$', '') for x in df.columns}

如果已经有新列名的列表,可以尝试以下操作:

new_cols = ['a', 'b', 'c', 'd', 'e']
new_names_map = {df.columns[i]:new_cols[i] for i in range(len(new_cols))}

df.rename(new_names_map, axis=1, inplace=True)

我需要重命名XGBoost的功能,但它不喜欢这些功能:

import re
regex = r"[!\"#$%&'()*+,\-.\/:;<=>?@[\\\]^_`{|}~ ]+"
X_trn.columns = X_trn.columns.str.replace(regex, '_', regex=True)
X_tst.columns = X_tst.columns.str.replace(regex, '_', regex=True)