我想从

['$a', '$b', '$c', '$d', '$e']

to

['a', 'b', 'c', 'd', 'e']

当前回答

假设这是您的数据帧。

可以使用两种方法重命名列。

使用dataframe.columns=[#list]df.columns=[‘a’,‘b’,‘c’,‘d’,‘e’]此方法的限制是,如果必须更改一列,则必须传递完整的列列表。此外,此方法不适用于索引标签。例如,如果您通过以下步骤:df.columns=[‘a’、‘b’、‘c’、‘d’]这将引发错误。长度不匹配:预期轴有5个元素,新值有4个元素。另一种方法是Pandasrename()方法,用于重命名任何索引、列或行df=df.rename(列={‘$a‘:‘a‘})

同样,您可以更改任何行或列。

其他回答

我的方法是通用的,您可以通过逗号分隔分隔符=variable来添加额外的分隔符,并对其进行未来验证。

工作代码:

import pandas as pd
import re


df = pd.DataFrame({'$a':[1,2], '$b': [3,4],'$c':[5,6], '$d': [7,8], '$e': [9,10]})

delimiters = '$'
matchPattern = '|'.join(map(re.escape, delimiters))
df.columns = [re.split(matchPattern, i)[1] for i in df.columns ]

输出:

>>> df
   $a  $b  $c  $d  $e
0   1   3   5   7   9
1   2   4   6   8  10

>>> df
   a  b  c  d   e
0  1  3  5  7   9
1  2  4  6  8  10

由于您只想删除所有列名中的$符号,因此只需执行以下操作:

df = df.rename(columns=lambda x: x.replace('$', ''))

OR

df.rename(columns=lambda x: x.replace('$', ''), inplace=True)

假设您的数据集名称为df,df具有。

df = ['$a', '$b', '$c', '$d', '$e']`

所以,要重命名这些,我们只需这样做。

df.columns = ['a','b','c','d','e']

这里有一个我喜欢用来减少打字的漂亮小函数:

def rename(data, oldnames, newname):
    if type(oldnames) == str: # Input can be a string or list of strings
        oldnames = [oldnames] # When renaming multiple columns
        newname = [newname] # Make sure you pass the corresponding list of new names
    i = 0
    for name in oldnames:
        oldvar = [c for c in data.columns if name in c]
        if len(oldvar) == 0:
            raise ValueError("Sorry, couldn't find that column in the dataset")
        if len(oldvar) > 1: # Doesn't have to be an exact match
            print("Found multiple columns that matched " + str(name) + ": ")
            for c in oldvar:
                print(str(oldvar.index(c)) + ": " + str(c))
            ind = input('Please enter the index of the column you would like to rename: ')
            oldvar = oldvar[int(ind)]
        if len(oldvar) == 1:
            oldvar = oldvar[0]
        data = data.rename(columns = {oldvar : newname[i]})
        i += 1
    return data

下面是一个如何工作的示例:

In [2]: df = pd.DataFrame(np.random.randint(0, 10, size=(10, 4)), columns = ['col1', 'col2', 'omg', 'idk'])
# First list = existing variables
# Second list = new names for those variables
In [3]: df = rename(df, ['col', 'omg'],['first', 'ohmy'])
Found multiple columns that matched col:
0: col1
1: col2

Please enter the index of the column you would like to rename: 0

In [4]: df.columns
Out[5]: Index(['first', 'col2', 'ohmy', 'idk'], dtype='object')

Use:

old_names = ['$a', '$b', '$c', '$d', '$e'] 
new_names = ['a', 'b', 'c', 'd', 'e']
df.rename(columns=dict(zip(old_names, new_names)), inplace=True)

这样,您可以根据需要手动编辑new_names。当您只需要重命名几个列来纠正拼写错误、重音、删除特殊字符等时,它非常有用。