我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
当前回答
另一个选项是使用正则表达式重命名:
import pandas as pd
import re
df = pd.DataFrame({'$a':[1,2], '$b':[3,4], '$c':[5,6]})
df = df.rename(columns=lambda x: re.sub('\$','',x))
>>> df
a b c
0 1 3 5
1 2 4 6
其他回答
只需将其分配给.columns属性:
>>> df = pd.DataFrame({'$a':[1,2], '$b': [10,20]})
>>> df
$a $b
0 1 10
1 2 20
>>> df.columns = ['a', 'b']
>>> df
a b
0 1 10
1 2 20
假设这是您的数据帧。
可以使用两种方法重命名列。
使用dataframe.columns=[#list]df.columns=[‘a’,‘b’,‘c’,‘d’,‘e’]此方法的限制是,如果必须更改一列,则必须传递完整的列列表。此外,此方法不适用于索引标签。例如,如果您通过以下步骤:df.columns=[‘a’、‘b’、‘c’、‘d’]这将引发错误。长度不匹配:预期轴有5个元素,新值有4个元素。另一种方法是Pandasrename()方法,用于重命名任何索引、列或行df=df.rename(列={‘$a‘:‘a‘})
同样,您可以更改任何行或列。
请注意,前面答案中的方法不适用于MultiIndex。对于MultiIndex,您需要执行以下操作:
>>> df = pd.DataFrame({('$a','$x'):[1,2], ('$b','$y'): [3,4], ('e','f'):[5,6]})
>>> df
$a $b e
$x $y f
0 1 3 5
1 2 4 6
>>> rename = {('$a','$x'):('a','x'), ('$b','$y'):('b','y')}
>>> df.columns = pandas.MultiIndex.from_tuples([
rename.get(item, item) for item in df.columns.tolist()])
>>> df
a b e
x y f
0 1 3 5
1 2 4 6
我的单线回答是
df.columns=df_new_cols
它是最好的,处理时间为1/3。
timeit比较:
df有七列。我正在尝试更改一些名称。
%timeit df.rename(columns={old_col:new_col for (old_col,new_col) in zip(df_old_cols,df_new_cols)},inplace=True)
214 µs ± 10.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df.rename(columns=dict(zip(df_old_cols,df_new_cols)),inplace=True)
212 µs ± 7.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df.columns = df_new_cols
72.9 µs ± 17.2 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
# This way it will work
import pandas as pd
# Define a dictionary
rankings = {'test': ['a'],
'odi': ['E'],
't20': ['P']}
# Convert the dictionary into DataFrame
rankings_pd = pd.DataFrame(rankings)
# Before renaming the columns
print(rankings_pd)
rankings_pd.rename(columns = {'test':'TEST'}, inplace = True)