我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
当前回答
许多panda函数都有一个就地参数。当设置为True时,转换将直接应用于调用它的数据帧。例如:
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df.rename(columns={'$a': 'a'}, inplace=True)
df.columns
>>> Index(['a', '$b'], dtype='object')
或者,在某些情况下,您希望保留原始数据帧。如果创建数据帧是一项昂贵的任务,我经常看到人们陷入这种情况。例如,如果创建数据帧需要查询雪花数据库。在这种情况下,只需确保将inplace参数设置为False。
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df2 = df.rename(columns={'$a': 'a'}, inplace=False)
df.columns
>>> Index(['$a', '$b'], dtype='object')
df2.columns
>>> Index(['a', '$b'], dtype='object')
如果这些类型的转换是您经常做的,那么您还可以研究一些不同的panda GUI工具。我是一个叫做水户的人的创造者。它是一个电子表格,可以自动将您的编辑转换为python代码。
其他回答
假设您可以使用正则表达式,则此解决方案无需使用正则表达式进行手动编码:
import pandas as pd
import re
srch = re.compile(r"\w+")
data = pd.read_csv("CSV_FILE.csv")
cols = data.columns
new_cols = list(map(lambda v:v.group(), (list(map(srch.search, cols)))))
data.columns = new_cols
只需将其分配给.columns属性:
>>> df = pd.DataFrame({'$a':[1,2], '$b': [10,20]})
>>> df
$a $b
0 1 10
1 2 20
>>> df.columns = ['a', 'b']
>>> df
a b
0 1 10
1 2 20
假设您的数据集名称为df,df具有。
df = ['$a', '$b', '$c', '$d', '$e']`
所以,要重命名这些,我们只需这样做。
df.columns = ['a','b','c','d','e']
这真的很简单。只需使用:
df.columns = ['Name1', 'Name2', 'Name3'...]
它将按照您输入的顺序分配列名。
# This way it will work
import pandas as pd
# Define a dictionary
rankings = {'test': ['a'],
'odi': ['E'],
't20': ['P']}
# Convert the dictionary into DataFrame
rankings_pd = pd.DataFrame(rankings)
# Before renaming the columns
print(rankings_pd)
rankings_pd.rename(columns = {'test':'TEST'}, inplace = True)