我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
当前回答
重命名Pandas中的列是一项简单的任务。
df.rename(columns={'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}, inplace=True)
其他回答
假设这是您的数据帧。
可以使用两种方法重命名列。
使用dataframe.columns=[#list]df.columns=[‘a’,‘b’,‘c’,‘d’,‘e’]此方法的限制是,如果必须更改一列,则必须传递完整的列列表。此外,此方法不适用于索引标签。例如,如果您通过以下步骤:df.columns=[‘a’、‘b’、‘c’、‘d’]这将引发错误。长度不匹配:预期轴有5个元素,新值有4个元素。另一种方法是Pandasrename()方法,用于重命名任何索引、列或行df=df.rename(列={‘$a‘:‘a‘})
同样,您可以更改任何行或列。
df = pd.DataFrame({'$a': [1], '$b': [1], '$c': [1], '$d': [1], '$e': [1]})
如果新列列表的顺序与现有列的顺序相同,则分配很简单:
new_cols = ['a', 'b', 'c', 'd', 'e']
df.columns = new_cols
>>> df
a b c d e
0 1 1 1 1 1
如果您有一个将旧列名键入到新列名的字典,可以执行以下操作:
d = {'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}
df.columns = df.columns.map(lambda col: d[col]) # Or `.map(d.get)` as pointed out by @PiRSquared.
>>> df
a b c d e
0 1 1 1 1 1
如果你没有列表或字典映射,你可以通过列表理解去掉前导$符号:
df.columns = [col[1:] if col[0] == '$' else col for col in df]
Use:
old_names = ['$a', '$b', '$c', '$d', '$e']
new_names = ['a', 'b', 'c', 'd', 'e']
df.rename(columns=dict(zip(old_names, new_names)), inplace=True)
这样,您可以根据需要手动编辑new_names。当您只需要重命名几个列来纠正拼写错误、重音、删除特殊字符等时,它非常有用。
另一个选项是使用正则表达式重命名:
import pandas as pd
import re
df = pd.DataFrame({'$a':[1,2], '$b':[3,4], '$c':[5,6]})
df = df.rename(columns=lambda x: re.sub('\$','',x))
>>> df
a b c
0 1 3 5
1 2 4 6
df.columns = ['a', 'b', 'c', 'd', 'e']
它将按照您提供的顺序用您提供的名称替换现有名称。