我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
当前回答
重命名Pandas中的列是一项简单的任务。
df.rename(columns={'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}, inplace=True)
其他回答
Use:
old_names = ['$a', '$b', '$c', '$d', '$e']
new_names = ['a', 'b', 'c', 'd', 'e']
df.rename(columns=dict(zip(old_names, new_names)), inplace=True)
这样,您可以根据需要手动编辑new_names。当您只需要重命名几个列来纠正拼写错误、重音、删除特殊字符等时,它非常有用。
假设这是您的数据帧。
可以使用两种方法重命名列。
使用dataframe.columns=[#list]df.columns=[‘a’,‘b’,‘c’,‘d’,‘e’]此方法的限制是,如果必须更改一列,则必须传递完整的列列表。此外,此方法不适用于索引标签。例如,如果您通过以下步骤:df.columns=[‘a’、‘b’、‘c’、‘d’]这将引发错误。长度不匹配:预期轴有5个元素,新值有4个元素。另一种方法是Pandasrename()方法,用于重命名任何索引、列或行df=df.rename(列={‘$a‘:‘a‘})
同样,您可以更改任何行或列。
您可以使用str.slice:
df.columns = df.columns.str.slice(1)
df.rename(index=str, columns={'A':'a', 'B':'b'})
pandas.DataFrame.rename
Pandas 0.21+答案
0.21版中的列重命名有一些重要更新。
重命名方法添加了可以设置为columns或1的axis参数。此更新使此方法与panda API的其余部分相匹配。它仍然具有索引和列参数,但不再强制您使用它们。intlace设置为False的set_axis方法允许您使用列表重命名所有索引或列标签。
Pandas 0.21示例+
构造示例DataFrame:
df = pd.DataFrame({'$a':[1,2], '$b': [3,4],
'$c':[5,6], '$d':[7,8],
'$e':[9,10]})
$a $b $c $d $e
0 1 3 5 7 9
1 2 4 6 8 10
使用axis='columns'或axis=1的重命名
df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis='columns')
or
df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis=1)
两者都会导致以下结果:
a b c d e
0 1 3 5 7 9
1 2 4 6 8 10
仍然可以使用旧方法签名:
df.rename(columns={'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'})
重命名函数还接受将应用于每个列名的函数。
df.rename(lambda x: x[1:], axis='columns')
or
df.rename(lambda x: x[1:], axis=1)
将set_axis与列表一起使用,inplace=False
可以为set_axis方法提供一个长度等于列数(或索引)的列表。目前,inplace默认为True,但在未来的版本中,inplace将默认为False。
df.set_axis(['a', 'b', 'c', 'd', 'e'], axis='columns', inplace=False)
or
df.set_axis(['a', 'b', 'c', 'd', 'e'], axis=1, inplace=False)
为什么不使用df.columns=[‘a’,‘b’,‘c’,‘d’,‘e’]?
像这样直接分配列没有错。这是一个非常好的解决方案。
使用set_axis的优点是它可以作为方法链的一部分使用,并返回DataFrame的新副本。如果没有它,在重新分配列之前,必须将链的中间步骤存储到另一个变量。
# new for pandas 0.21+
df.some_method1()
.some_method2()
.set_axis()
.some_method3()
# old way
df1 = df.some_method1()
.some_method2()
df1.columns = columns
df1.some_method3()