我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
当前回答
您可以使用str.slice:
df.columns = df.columns.str.slice(1)
其他回答
由于您只想删除所有列名中的$符号,因此只需执行以下操作:
df = df.rename(columns=lambda x: x.replace('$', ''))
OR
df.rename(columns=lambda x: x.replace('$', ''), inplace=True)
Use:
old_names = ['$a', '$b', '$c', '$d', '$e']
new_names = ['a', 'b', 'c', 'd', 'e']
df.rename(columns=dict(zip(old_names, new_names)), inplace=True)
这样,您可以根据需要手动编辑new_names。当您只需要重命名几个列来纠正拼写错误、重音、删除特殊字符等时,它非常有用。
这真的很简单。只需使用:
df.columns = ['Name1', 'Name2', 'Name3'...]
它将按照您输入的顺序分配列名。
列名与系列名称
我想解释一下幕后发生的事情。
数据帧是一组系列。
序列又是numpy.array的扩展。
numpy.arrays具有属性.name。
这是系列的名称。熊猫很少尊重这个属性,但它会在某些地方停留,可以用来攻击熊猫的一些行为。
命名列列表
这里有很多答案谈到df.columns属性是一个列表,而实际上它是一个系列。这意味着它具有.name属性。
如果您决定填写列的名称“系列:
df.columns = ['column_one', 'column_two']
df.columns.names = ['name of the list of columns']
df.index.names = ['name of the index']
name of the list of columns column_one column_two
name of the index
0 4 1
1 5 2
2 6 3
请注意,索引的名称总是低一列。
挥之不去的艺术事实
.name属性有时会持续存在。如果将df.columns设置为['one','two'],则df.one.name将为'one'。
如果您将df.one.name设置为'three',则df.columns仍然会给您['one','two'],df.one.name会给您'three]。
BUT
pd.DataFrame(df.one)将返回
three
0 1
1 2
2 3
因为Pandas重用已经定义的Series的.name。
多级列名
Pandas有多种方法来实现多层列名。这里面没有太多魔法,但我想在我的回答中也包括这一点,因为我没有看到任何人在这里学习这一点。
|one |
|one |two |
0 | 4 | 1 |
1 | 5 | 2 |
2 | 6 | 3 |
通过将列设置为列表,这很容易实现,如下所示:
df.columns = [['one', 'one'], ['one', 'two']]
假设您可以使用正则表达式,则此解决方案无需使用正则表达式进行手动编码:
import pandas as pd
import re
srch = re.compile(r"\w+")
data = pd.read_csv("CSV_FILE.csv")
cols = data.columns
new_cols = list(map(lambda v:v.group(), (list(map(srch.search, cols)))))
data.columns = new_cols