我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
当前回答
除了已经提供的解决方案之外,您还可以在读取文件时替换所有列。我们可以使用names和header=0来实现这一点。
首先,我们创建一个我们喜欢用作列名的名称列表:
import pandas as pd
ufo_cols = ['city', 'color reported', 'shape reported', 'state', 'time']
ufo.columns = ufo_cols
ufo = pd.read_csv('link to the file you are using', names = ufo_cols, header = 0)
在这种情况下,所有列名都将替换为列表中的名称。
其他回答
df.columns = ['a', 'b', 'c', 'd', 'e']
它将按照您提供的顺序用您提供的名称替换现有名称。
我需要重命名XGBoost的功能,但它不喜欢这些功能:
import re
regex = r"[!\"#$%&'()*+,\-.\/:;<=>?@[\\\]^_`{|}~ ]+"
X_trn.columns = X_trn.columns.str.replace(regex, '_', regex=True)
X_tst.columns = X_tst.columns.str.replace(regex, '_', regex=True)
重命名Pandas中的列是一项简单的任务。
df.rename(columns={'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}, inplace=True)
列名与系列名称
我想解释一下幕后发生的事情。
数据帧是一组系列。
序列又是numpy.array的扩展。
numpy.arrays具有属性.name。
这是系列的名称。熊猫很少尊重这个属性,但它会在某些地方停留,可以用来攻击熊猫的一些行为。
命名列列表
这里有很多答案谈到df.columns属性是一个列表,而实际上它是一个系列。这意味着它具有.name属性。
如果您决定填写列的名称“系列:
df.columns = ['column_one', 'column_two']
df.columns.names = ['name of the list of columns']
df.index.names = ['name of the index']
name of the list of columns column_one column_two
name of the index
0 4 1
1 5 2
2 6 3
请注意,索引的名称总是低一列。
挥之不去的艺术事实
.name属性有时会持续存在。如果将df.columns设置为['one','two'],则df.one.name将为'one'。
如果您将df.one.name设置为'three',则df.columns仍然会给您['one','two'],df.one.name会给您'three]。
BUT
pd.DataFrame(df.one)将返回
three
0 1
1 2
2 3
因为Pandas重用已经定义的Series的.name。
多级列名
Pandas有多种方法来实现多层列名。这里面没有太多魔法,但我想在我的回答中也包括这一点,因为我没有看到任何人在这里学习这一点。
|one |
|one |two |
0 | 4 | 1 |
1 | 5 | 2 |
2 | 6 | 3 |
通过将列设置为列表,这很容易实现,如下所示:
df.columns = [['one', 'one'], ['one', 'two']]
一个简单而“有趣”(和蟒蛇?)的解决方案:
df.rename(columns={x: x.replace('$', '') for x in df.columns})
哪里:
df = pd.DataFrame(columns=['$a', '$b', '$c', '$d', '$e'])
步骤:
获取DataFrame的列作为列表:
df.columns
在DataFrames中重命名的方法:
df.rename()
属性以指定要重命名列:
columns={}
在字典中,您需要指定要重命名的列(在每个键中)以及它们将获得的新名称(每个值)
{'old_col_name': 'new_col_name', ...}
由于您的更改遵循一种模式,为了删除每列中的$字符,我们可以使用字典理解:
{x: x.replace('$', '') for x in df.columns}