我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
当前回答
除了已经提供的解决方案之外,您还可以在读取文件时替换所有列。我们可以使用names和header=0来实现这一点。
首先,我们创建一个我们喜欢用作列名的名称列表:
import pandas as pd
ufo_cols = ['city', 'color reported', 'shape reported', 'state', 'time']
ufo.columns = ufo_cols
ufo = pd.read_csv('link to the file you are using', names = ufo_cols, header = 0)
在这种情况下,所有列名都将替换为列表中的名称。
其他回答
许多panda函数都有一个就地参数。当设置为True时,转换将直接应用于调用它的数据帧。例如:
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df.rename(columns={'$a': 'a'}, inplace=True)
df.columns
>>> Index(['a', '$b'], dtype='object')
或者,在某些情况下,您希望保留原始数据帧。如果创建数据帧是一项昂贵的任务,我经常看到人们陷入这种情况。例如,如果创建数据帧需要查询雪花数据库。在这种情况下,只需确保将inplace参数设置为False。
df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df2 = df.rename(columns={'$a': 'a'}, inplace=False)
df.columns
>>> Index(['$a', '$b'], dtype='object')
df2.columns
>>> Index(['a', '$b'], dtype='object')
如果这些类型的转换是您经常做的,那么您还可以研究一些不同的panda GUI工具。我是一个叫做水户的人的创造者。它是一个电子表格,可以自动将您的编辑转换为python代码。
df = pd.DataFrame({'$a': [1], '$b': [1], '$c': [1], '$d': [1], '$e': [1]})
如果新列列表的顺序与现有列的顺序相同,则分配很简单:
new_cols = ['a', 'b', 'c', 'd', 'e']
df.columns = new_cols
>>> df
a b c d e
0 1 1 1 1 1
如果您有一个将旧列名键入到新列名的字典,可以执行以下操作:
d = {'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}
df.columns = df.columns.map(lambda col: d[col]) # Or `.map(d.get)` as pointed out by @PiRSquared.
>>> df
a b c d e
0 1 1 1 1 1
如果你没有列表或字典映射,你可以通过列表理解去掉前导$符号:
df.columns = [col[1:] if col[0] == '$' else col for col in df]
这里有一个我喜欢用来减少打字的漂亮小函数:
def rename(data, oldnames, newname):
if type(oldnames) == str: # Input can be a string or list of strings
oldnames = [oldnames] # When renaming multiple columns
newname = [newname] # Make sure you pass the corresponding list of new names
i = 0
for name in oldnames:
oldvar = [c for c in data.columns if name in c]
if len(oldvar) == 0:
raise ValueError("Sorry, couldn't find that column in the dataset")
if len(oldvar) > 1: # Doesn't have to be an exact match
print("Found multiple columns that matched " + str(name) + ": ")
for c in oldvar:
print(str(oldvar.index(c)) + ": " + str(c))
ind = input('Please enter the index of the column you would like to rename: ')
oldvar = oldvar[int(ind)]
if len(oldvar) == 1:
oldvar = oldvar[0]
data = data.rename(columns = {oldvar : newname[i]})
i += 1
return data
下面是一个如何工作的示例:
In [2]: df = pd.DataFrame(np.random.randint(0, 10, size=(10, 4)), columns = ['col1', 'col2', 'omg', 'idk'])
# First list = existing variables
# Second list = new names for those variables
In [3]: df = rename(df, ['col', 'omg'],['first', 'ohmy'])
Found multiple columns that matched col:
0: col1
1: col2
Please enter the index of the column you would like to rename: 0
In [4]: df.columns
Out[5]: Index(['first', 'col2', 'ohmy', 'idk'], dtype='object')
df.rename(index=str, columns={'A':'a', 'B':'b'})
pandas.DataFrame.rename
只需将其分配给.columns属性:
>>> df = pd.DataFrame({'$a':[1,2], '$b': [10,20]})
>>> df
$a $b
0 1 10
1 2 20
>>> df.columns = ['a', 'b']
>>> df
a b
0 1 10
1 2 20