我想从

['$a', '$b', '$c', '$d', '$e']

to

['a', 'b', 'c', 'd', 'e']

当前回答

假设您可以使用正则表达式,则此解决方案无需使用正则表达式进行手动编码:

import pandas as pd
import re

srch = re.compile(r"\w+")

data = pd.read_csv("CSV_FILE.csv")
cols = data.columns
new_cols = list(map(lambda v:v.group(), (list(map(srch.search, cols)))))
data.columns = new_cols

其他回答

这真的很简单。只需使用:

df.columns = ['Name1', 'Name2', 'Name3'...]

它将按照您输入的顺序分配列名。

重命名方法可以采用一个函数,例如:

In [11]: df.columns
Out[11]: Index([u'$a', u'$b', u'$c', u'$d', u'$e'], dtype=object)

In [12]: df.rename(columns=lambda x: x[1:], inplace=True)

In [13]: df.columns
Out[13]: Index([u'a', u'b', u'c', u'd', u'e'], dtype=object)
df.columns = ['a', 'b', 'c', 'd', 'e']

它将按照您提供的顺序用您提供的名称替换现有名称。

Pandas 0.21+答案

0.21版中的列重命名有一些重要更新。

重命名方法添加了可以设置为columns或1的axis参数。此更新使此方法与panda API的其余部分相匹配。它仍然具有索引和列参数,但不再强制您使用它们。intlace设置为False的set_axis方法允许您使用列表重命名所有索引或列标签。

Pandas 0.21示例+

构造示例DataFrame:

df = pd.DataFrame({'$a':[1,2], '$b': [3,4], 
                   '$c':[5,6], '$d':[7,8], 
                   '$e':[9,10]})

   $a  $b  $c  $d  $e
0   1   3   5   7   9
1   2   4   6   8  10

使用axis='columns'或axis=1的重命名

df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis='columns')

or

df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis=1)

两者都会导致以下结果:

   a  b  c  d   e
0  1  3  5  7   9
1  2  4  6  8  10

仍然可以使用旧方法签名:

df.rename(columns={'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'})

重命名函数还接受将应用于每个列名的函数。

df.rename(lambda x: x[1:], axis='columns')

or

df.rename(lambda x: x[1:], axis=1)

将set_axis与列表一起使用,inplace=False

可以为set_axis方法提供一个长度等于列数(或索引)的列表。目前,inplace默认为True,但在未来的版本中,inplace将默认为False。

df.set_axis(['a', 'b', 'c', 'd', 'e'], axis='columns', inplace=False)

or

df.set_axis(['a', 'b', 'c', 'd', 'e'], axis=1, inplace=False)

为什么不使用df.columns=[‘a’,‘b’,‘c’,‘d’,‘e’]?

像这样直接分配列没有错。这是一个非常好的解决方案。

使用set_axis的优点是它可以作为方法链的一部分使用,并返回DataFrame的新副本。如果没有它,在重新分配列之前,必须将链的中间步骤存储到另一个变量。

# new for pandas 0.21+
df.some_method1()
  .some_method2()
  .set_axis()
  .some_method3()

# old way
df1 = df.some_method1()
        .some_method2()
df1.columns = columns
df1.some_method3()

我需要重命名XGBoost的功能,但它不喜欢这些功能:

import re
regex = r"[!\"#$%&'()*+,\-.\/:;<=>?@[\\\]^_`{|}~ ]+"
X_trn.columns = X_trn.columns.str.replace(regex, '_', regex=True)
X_tst.columns = X_tst.columns.str.replace(regex, '_', regex=True)