我想从

['$a', '$b', '$c', '$d', '$e']

to

['a', 'b', 'c', 'd', 'e']

当前回答

重命名特定列

使用df.reame()函数并引用要重命名的列。并非所有列都必须重命名:

df = df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'})
# Or rename the existing DataFrame (rather than creating a copy) 
df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'}, inplace=True)

最小代码示例

df = pd.DataFrame('x', index=range(3), columns=list('abcde'))
df

   a  b  c  d  e
0  x  x  x  x  x
1  x  x  x  x  x
2  x  x  x  x  x

以下方法都可以工作并产生相同的输出:

df2 = df.rename({'a': 'X', 'b': 'Y'}, axis=1)  # new method
df2 = df.rename({'a': 'X', 'b': 'Y'}, axis='columns')
df2 = df.rename(columns={'a': 'X', 'b': 'Y'})  # old method  

df2

   X  Y  c  d  e
0  x  x  x  x  x
1  x  x  x  x  x
2  x  x  x  x  x

请记住将结果指定回,因为修改不在原位。或者,指定inplace=True:

df.rename({'a': 'X', 'b': 'Y'}, axis=1, inplace=True)
df

   X  Y  c  d  e
0  x  x  x  x  x
1  x  x  x  x  x
2  x  x  x  x  x
 

在v0.25中,如果指定了要重命名的无效列,还可以指定errors='raise'来引发错误。请参阅v0.25 rename()文档。


重新分配列标题

使用df.set_axis(),axis=1,inplace=False(返回副本)。

df2 = df.set_axis(['V', 'W', 'X', 'Y', 'Z'], axis=1, inplace=False)
df2

   V  W  X  Y  Z
0  x  x  x  x  x
1  x  x  x  x  x
2  x  x  x  x  x

这将返回一个副本,但您可以通过设置inplace=True来修改DataFrame(这是<=0.24版本的默认行为,但将来可能会更改)。

您也可以直接分配标题:

df.columns = ['V', 'W', 'X', 'Y', 'Z']
df

   V  W  X  Y  Z
0  x  x  x  x  x
1  x  x  x  x  x
2  x  x  x  x  x

其他回答

列名与系列名称

我想解释一下幕后发生的事情。

数据帧是一组系列。

序列又是numpy.array的扩展。

numpy.arrays具有属性.name。

这是系列的名称。熊猫很少尊重这个属性,但它会在某些地方停留,可以用来攻击熊猫的一些行为。

命名列列表

这里有很多答案谈到df.columns属性是一个列表,而实际上它是一个系列。这意味着它具有.name属性。

如果您决定填写列的名称“系列:

df.columns = ['column_one', 'column_two']
df.columns.names = ['name of the list of columns']
df.index.names = ['name of the index']

name of the list of columns     column_one  column_two
name of the index
0                                    4           1
1                                    5           2
2                                    6           3

请注意,索引的名称总是低一列。

挥之不去的艺术事实

.name属性有时会持续存在。如果将df.columns设置为['one','two'],则df.one.name将为'one'。

如果您将df.one.name设置为'three',则df.columns仍然会给您['one','two'],df.one.name会给您'three]。

BUT

pd.DataFrame(df.one)将返回

    three
0       1
1       2
2       3

因为Pandas重用已经定义的Series的.name。

多级列名

Pandas有多种方法来实现多层列名。这里面没有太多魔法,但我想在我的回答中也包括这一点,因为我没有看到任何人在这里学习这一点。

    |one            |
    |one      |two  |
0   |  4      |  1  |
1   |  5      |  2  |
2   |  6      |  3  |

通过将列设置为列表,这很容易实现,如下所示:

df.columns = [['one', 'one'], ['one', 'two']]

重命名方法可以采用一个函数,例如:

In [11]: df.columns
Out[11]: Index([u'$a', u'$b', u'$c', u'$d', u'$e'], dtype=object)

In [12]: df.rename(columns=lambda x: x[1:], inplace=True)

In [13]: df.columns
Out[13]: Index([u'a', u'b', u'c', u'd', u'e'], dtype=object)

重命名特定列

使用df.reame()函数并引用要重命名的列。并非所有列都必须重命名:

df = df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'})
# Or rename the existing DataFrame (rather than creating a copy) 
df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'}, inplace=True)

最小代码示例

df = pd.DataFrame('x', index=range(3), columns=list('abcde'))
df

   a  b  c  d  e
0  x  x  x  x  x
1  x  x  x  x  x
2  x  x  x  x  x

以下方法都可以工作并产生相同的输出:

df2 = df.rename({'a': 'X', 'b': 'Y'}, axis=1)  # new method
df2 = df.rename({'a': 'X', 'b': 'Y'}, axis='columns')
df2 = df.rename(columns={'a': 'X', 'b': 'Y'})  # old method  

df2

   X  Y  c  d  e
0  x  x  x  x  x
1  x  x  x  x  x
2  x  x  x  x  x

请记住将结果指定回,因为修改不在原位。或者,指定inplace=True:

df.rename({'a': 'X', 'b': 'Y'}, axis=1, inplace=True)
df

   X  Y  c  d  e
0  x  x  x  x  x
1  x  x  x  x  x
2  x  x  x  x  x
 

在v0.25中,如果指定了要重命名的无效列,还可以指定errors='raise'来引发错误。请参阅v0.25 rename()文档。


重新分配列标题

使用df.set_axis(),axis=1,inplace=False(返回副本)。

df2 = df.set_axis(['V', 'W', 'X', 'Y', 'Z'], axis=1, inplace=False)
df2

   V  W  X  Y  Z
0  x  x  x  x  x
1  x  x  x  x  x
2  x  x  x  x  x

这将返回一个副本,但您可以通过设置inplace=True来修改DataFrame(这是<=0.24版本的默认行为,但将来可能会更改)。

您也可以直接分配标题:

df.columns = ['V', 'W', 'X', 'Y', 'Z']
df

   V  W  X  Y  Z
0  x  x  x  x  x
1  x  x  x  x  x
2  x  x  x  x  x

Pandas 0.21+答案

0.21版中的列重命名有一些重要更新。

重命名方法添加了可以设置为columns或1的axis参数。此更新使此方法与panda API的其余部分相匹配。它仍然具有索引和列参数,但不再强制您使用它们。intlace设置为False的set_axis方法允许您使用列表重命名所有索引或列标签。

Pandas 0.21示例+

构造示例DataFrame:

df = pd.DataFrame({'$a':[1,2], '$b': [3,4], 
                   '$c':[5,6], '$d':[7,8], 
                   '$e':[9,10]})

   $a  $b  $c  $d  $e
0   1   3   5   7   9
1   2   4   6   8  10

使用axis='columns'或axis=1的重命名

df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis='columns')

or

df.rename({'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'}, axis=1)

两者都会导致以下结果:

   a  b  c  d   e
0  1  3  5  7   9
1  2  4  6  8  10

仍然可以使用旧方法签名:

df.rename(columns={'$a':'a', '$b':'b', '$c':'c', '$d':'d', '$e':'e'})

重命名函数还接受将应用于每个列名的函数。

df.rename(lambda x: x[1:], axis='columns')

or

df.rename(lambda x: x[1:], axis=1)

将set_axis与列表一起使用,inplace=False

可以为set_axis方法提供一个长度等于列数(或索引)的列表。目前,inplace默认为True,但在未来的版本中,inplace将默认为False。

df.set_axis(['a', 'b', 'c', 'd', 'e'], axis='columns', inplace=False)

or

df.set_axis(['a', 'b', 'c', 'd', 'e'], axis=1, inplace=False)

为什么不使用df.columns=[‘a’,‘b’,‘c’,‘d’,‘e’]?

像这样直接分配列没有错。这是一个非常好的解决方案。

使用set_axis的优点是它可以作为方法链的一部分使用,并返回DataFrame的新副本。如果没有它,在重新分配列之前,必须将链的中间步骤存储到另一个变量。

# new for pandas 0.21+
df.some_method1()
  .some_method2()
  .set_axis()
  .some_method3()

# old way
df1 = df.some_method1()
        .some_method2()
df1.columns = columns
df1.some_method3()

您可以使用str.slice:

df.columns = df.columns.str.slice(1)