我想从

['$a', '$b', '$c', '$d', '$e']

to

['a', 'b', 'c', 'd', 'e']

当前回答

请注意,前面答案中的方法不适用于MultiIndex。对于MultiIndex,您需要执行以下操作:

>>> df = pd.DataFrame({('$a','$x'):[1,2], ('$b','$y'): [3,4], ('e','f'):[5,6]})
>>> df
   $a $b  e
   $x $y  f
0  1  3  5
1  2  4  6
>>> rename = {('$a','$x'):('a','x'), ('$b','$y'):('b','y')}
>>> df.columns = pandas.MultiIndex.from_tuples([
        rename.get(item, item) for item in df.columns.tolist()])
>>> df
   a  b  e
   x  y  f
0  1  3  5
1  2  4  6

其他回答

Use:

old_names = ['$a', '$b', '$c', '$d', '$e'] 
new_names = ['a', 'b', 'c', 'd', 'e']
df.rename(columns=dict(zip(old_names, new_names)), inplace=True)

这样,您可以根据需要手动编辑new_names。当您只需要重命名几个列来纠正拼写错误、重音、删除特殊字符等时,它非常有用。

列名与系列名称

我想解释一下幕后发生的事情。

数据帧是一组系列。

序列又是numpy.array的扩展。

numpy.arrays具有属性.name。

这是系列的名称。熊猫很少尊重这个属性,但它会在某些地方停留,可以用来攻击熊猫的一些行为。

命名列列表

这里有很多答案谈到df.columns属性是一个列表,而实际上它是一个系列。这意味着它具有.name属性。

如果您决定填写列的名称“系列:

df.columns = ['column_one', 'column_two']
df.columns.names = ['name of the list of columns']
df.index.names = ['name of the index']

name of the list of columns     column_one  column_two
name of the index
0                                    4           1
1                                    5           2
2                                    6           3

请注意,索引的名称总是低一列。

挥之不去的艺术事实

.name属性有时会持续存在。如果将df.columns设置为['one','two'],则df.one.name将为'one'。

如果您将df.one.name设置为'three',则df.columns仍然会给您['one','two'],df.one.name会给您'three]。

BUT

pd.DataFrame(df.one)将返回

    three
0       1
1       2
2       3

因为Pandas重用已经定义的Series的.name。

多级列名

Pandas有多种方法来实现多层列名。这里面没有太多魔法,但我想在我的回答中也包括这一点,因为我没有看到任何人在这里学习这一点。

    |one            |
    |one      |two  |
0   |  4      |  1  |
1   |  5      |  2  |
2   |  6      |  3  |

通过将列设置为列表,这很容易实现,如下所示:

df.columns = [['one', 'one'], ['one', 'two']]

我需要重命名XGBoost的功能,但它不喜欢这些功能:

import re
regex = r"[!\"#$%&'()*+,\-.\/:;<=>?@[\\\]^_`{|}~ ]+"
X_trn.columns = X_trn.columns.str.replace(regex, '_', regex=True)
X_tst.columns = X_tst.columns.str.replace(regex, '_', regex=True)

如果您只想删除“$”符号,请使用以下代码

df.columns = pd.Series(df.columns.str.replace("$", ""))

假设您可以使用正则表达式,则此解决方案无需使用正则表达式进行手动编码:

import pandas as pd
import re

srch = re.compile(r"\w+")

data = pd.read_csv("CSV_FILE.csv")
cols = data.columns
new_cols = list(map(lambda v:v.group(), (list(map(srch.search, cols)))))
data.columns = new_cols