我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
当前回答
请注意,前面答案中的方法不适用于MultiIndex。对于MultiIndex,您需要执行以下操作:
>>> df = pd.DataFrame({('$a','$x'):[1,2], ('$b','$y'): [3,4], ('e','f'):[5,6]})
>>> df
$a $b e
$x $y f
0 1 3 5
1 2 4 6
>>> rename = {('$a','$x'):('a','x'), ('$b','$y'):('b','y')}
>>> df.columns = pandas.MultiIndex.from_tuples([
rename.get(item, item) for item in df.columns.tolist()])
>>> df
a b e
x y f
0 1 3 5
1 2 4 6
其他回答
如“使用文本数据:
df.columns = df.columns.str.replace('$', '')
一个简单而“有趣”(和蟒蛇?)的解决方案:
df.rename(columns={x: x.replace('$', '') for x in df.columns})
哪里:
df = pd.DataFrame(columns=['$a', '$b', '$c', '$d', '$e'])
步骤:
获取DataFrame的列作为列表:
df.columns
在DataFrames中重命名的方法:
df.rename()
属性以指定要重命名列:
columns={}
在字典中,您需要指定要重命名的列(在每个键中)以及它们将获得的新名称(每个值)
{'old_col_name': 'new_col_name', ...}
由于您的更改遵循一种模式,为了删除每列中的$字符,我们可以使用字典理解:
{x: x.replace('$', '') for x in df.columns}
df.rename(index=str, columns={'A':'a', 'B':'b'})
pandas.DataFrame.rename
假设您可以使用正则表达式,则此解决方案无需使用正则表达式进行手动编码:
import pandas as pd
import re
srch = re.compile(r"\w+")
data = pd.read_csv("CSV_FILE.csv")
cols = data.columns
new_cols = list(map(lambda v:v.group(), (list(map(srch.search, cols)))))
data.columns = new_cols
df = pd.DataFrame({'$a': [1], '$b': [1], '$c': [1], '$d': [1], '$e': [1]})
如果新列列表的顺序与现有列的顺序相同,则分配很简单:
new_cols = ['a', 'b', 'c', 'd', 'e']
df.columns = new_cols
>>> df
a b c d e
0 1 1 1 1 1
如果您有一个将旧列名键入到新列名的字典,可以执行以下操作:
d = {'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}
df.columns = df.columns.map(lambda col: d[col]) # Or `.map(d.get)` as pointed out by @PiRSquared.
>>> df
a b c d e
0 1 1 1 1 1
如果你没有列表或字典映射,你可以通过列表理解去掉前导$符号:
df.columns = [col[1:] if col[0] == '$' else col for col in df]