我想从

['$a', '$b', '$c', '$d', '$e']

to

['a', 'b', 'c', 'd', 'e']

当前回答

如“使用文本数据:

df.columns = df.columns.str.replace('$', '')

其他回答

我的方法是通用的,您可以通过逗号分隔分隔符=variable来添加额外的分隔符,并对其进行未来验证。

工作代码:

import pandas as pd
import re


df = pd.DataFrame({'$a':[1,2], '$b': [3,4],'$c':[5,6], '$d': [7,8], '$e': [9,10]})

delimiters = '$'
matchPattern = '|'.join(map(re.escape, delimiters))
df.columns = [re.split(matchPattern, i)[1] for i in df.columns ]

输出:

>>> df
   $a  $b  $c  $d  $e
0   1   3   5   7   9
1   2   4   6   8  10

>>> df
   a  b  c  d   e
0  1  3  5  7   9
1  2  4  6  8  10
# This way it will work
import pandas as pd

# Define a dictionary 
rankings = {'test': ['a'],
        'odi': ['E'],
        't20': ['P']}

# Convert the dictionary into DataFrame
rankings_pd = pd.DataFrame(rankings)

# Before renaming the columns
print(rankings_pd)

rankings_pd.rename(columns = {'test':'TEST'}, inplace = True)

重命名方法可以采用一个函数,例如:

In [11]: df.columns
Out[11]: Index([u'$a', u'$b', u'$c', u'$d', u'$e'], dtype=object)

In [12]: df.rename(columns=lambda x: x[1:], inplace=True)

In [13]: df.columns
Out[13]: Index([u'a', u'b', u'c', u'd', u'e'], dtype=object)

假设您可以使用正则表达式,则此解决方案无需使用正则表达式进行手动编码:

import pandas as pd
import re

srch = re.compile(r"\w+")

data = pd.read_csv("CSV_FILE.csv")
cols = data.columns
new_cols = list(map(lambda v:v.group(), (list(map(srch.search, cols)))))
data.columns = new_cols

重命名Pandas中的列是一项简单的任务。

df.rename(columns={'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}, inplace=True)