我想从

['$a', '$b', '$c', '$d', '$e']

to

['a', 'b', 'c', 'd', 'e']

当前回答

假设您的数据集名称为df,df具有。

df = ['$a', '$b', '$c', '$d', '$e']`

所以,要重命名这些,我们只需这样做。

df.columns = ['a','b','c','d','e']

其他回答

假设这是您的数据帧。

可以使用两种方法重命名列。

使用dataframe.columns=[#list]df.columns=[‘a’,‘b’,‘c’,‘d’,‘e’]此方法的限制是,如果必须更改一列,则必须传递完整的列列表。此外,此方法不适用于索引标签。例如,如果您通过以下步骤:df.columns=[‘a’、‘b’、‘c’、‘d’]这将引发错误。长度不匹配:预期轴有5个元素,新值有4个元素。另一种方法是Pandasrename()方法,用于重命名任何索引、列或行df=df.rename(列={‘$a‘:‘a‘})

同样,您可以更改任何行或列。

可以将lstrip或strip方法与索引一起使用:

df.columns = df.columns.str.lstrip('$')

or

cols = ['$a', '$b', '$c', '$d', '$e']
pd.Series(cols).str.lstrip('$').tolist()

输出:

['a', 'b', 'c', 'd', 'e']

只需将其分配给.columns属性:

>>> df = pd.DataFrame({'$a':[1,2], '$b': [10,20]})
>>> df
   $a  $b
0   1  10
1   2  20

>>> df.columns = ['a', 'b']
>>> df
   a   b
0  1  10
1  2  20
df = pd.DataFrame({'$a': [1], '$b': [1], '$c': [1], '$d': [1], '$e': [1]})

如果新列列表的顺序与现有列的顺序相同,则分配很简单:

new_cols = ['a', 'b', 'c', 'd', 'e']
df.columns = new_cols
>>> df
   a  b  c  d  e
0  1  1  1  1  1

如果您有一个将旧列名键入到新列名的字典,可以执行以下操作:

d = {'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}
df.columns = df.columns.map(lambda col: d[col])  # Or `.map(d.get)` as pointed out by @PiRSquared.
>>> df
   a  b  c  d  e
0  1  1  1  1  1

如果你没有列表或字典映射,你可以通过列表理解去掉前导$符号:

df.columns = [col[1:] if col[0] == '$' else col for col in df]

列名与系列名称

我想解释一下幕后发生的事情。

数据帧是一组系列。

序列又是numpy.array的扩展。

numpy.arrays具有属性.name。

这是系列的名称。熊猫很少尊重这个属性,但它会在某些地方停留,可以用来攻击熊猫的一些行为。

命名列列表

这里有很多答案谈到df.columns属性是一个列表,而实际上它是一个系列。这意味着它具有.name属性。

如果您决定填写列的名称“系列:

df.columns = ['column_one', 'column_two']
df.columns.names = ['name of the list of columns']
df.index.names = ['name of the index']

name of the list of columns     column_one  column_two
name of the index
0                                    4           1
1                                    5           2
2                                    6           3

请注意,索引的名称总是低一列。

挥之不去的艺术事实

.name属性有时会持续存在。如果将df.columns设置为['one','two'],则df.one.name将为'one'。

如果您将df.one.name设置为'three',则df.columns仍然会给您['one','two'],df.one.name会给您'three]。

BUT

pd.DataFrame(df.one)将返回

    three
0       1
1       2
2       3

因为Pandas重用已经定义的Series的.name。

多级列名

Pandas有多种方法来实现多层列名。这里面没有太多魔法,但我想在我的回答中也包括这一点,因为我没有看到任何人在这里学习这一点。

    |one            |
    |one      |two  |
0   |  4      |  1  |
1   |  5      |  2  |
2   |  6      |  3  |

通过将列设置为列表,这很容易实现,如下所示:

df.columns = [['one', 'one'], ['one', 'two']]