我想从

['$a', '$b', '$c', '$d', '$e']

to

['a', 'b', 'c', 'd', 'e']

当前回答

这里有一个我喜欢用来减少打字的漂亮小函数:

def rename(data, oldnames, newname):
    if type(oldnames) == str: # Input can be a string or list of strings
        oldnames = [oldnames] # When renaming multiple columns
        newname = [newname] # Make sure you pass the corresponding list of new names
    i = 0
    for name in oldnames:
        oldvar = [c for c in data.columns if name in c]
        if len(oldvar) == 0:
            raise ValueError("Sorry, couldn't find that column in the dataset")
        if len(oldvar) > 1: # Doesn't have to be an exact match
            print("Found multiple columns that matched " + str(name) + ": ")
            for c in oldvar:
                print(str(oldvar.index(c)) + ": " + str(c))
            ind = input('Please enter the index of the column you would like to rename: ')
            oldvar = oldvar[int(ind)]
        if len(oldvar) == 1:
            oldvar = oldvar[0]
        data = data.rename(columns = {oldvar : newname[i]})
        i += 1
    return data

下面是一个如何工作的示例:

In [2]: df = pd.DataFrame(np.random.randint(0, 10, size=(10, 4)), columns = ['col1', 'col2', 'omg', 'idk'])
# First list = existing variables
# Second list = new names for those variables
In [3]: df = rename(df, ['col', 'omg'],['first', 'ohmy'])
Found multiple columns that matched col:
0: col1
1: col2

Please enter the index of the column you would like to rename: 0

In [4]: df.columns
Out[5]: Index(['first', 'col2', 'ohmy', 'idk'], dtype='object')

其他回答

如果已经有新列名的列表,可以尝试以下操作:

new_cols = ['a', 'b', 'c', 'd', 'e']
new_names_map = {df.columns[i]:new_cols[i] for i in range(len(new_cols))}

df.rename(new_names_map, axis=1, inplace=True)

由于您只想删除所有列名中的$符号,因此只需执行以下操作:

df = df.rename(columns=lambda x: x.replace('$', ''))

OR

df.rename(columns=lambda x: x.replace('$', ''), inplace=True)

重命名方法可以采用一个函数,例如:

In [11]: df.columns
Out[11]: Index([u'$a', u'$b', u'$c', u'$d', u'$e'], dtype=object)

In [12]: df.rename(columns=lambda x: x[1:], inplace=True)

In [13]: df.columns
Out[13]: Index([u'a', u'b', u'c', u'd', u'e'], dtype=object)

除了已经提供的解决方案之外,您还可以在读取文件时替换所有列。我们可以使用names和header=0来实现这一点。

首先,我们创建一个我们喜欢用作列名的名称列表:

import pandas as pd

ufo_cols = ['city', 'color reported', 'shape reported', 'state', 'time']
ufo.columns = ufo_cols

ufo = pd.read_csv('link to the file you are using', names = ufo_cols, header = 0)

在这种情况下,所有列名都将替换为列表中的名称。

让我们通过一个小例子来理解重命名。。。

使用映射重命名列:df=pd.DataFrame({“A”:[1,2,3],“B”:[4,5,6]})#创建列名为A和B的dfdf.reame({“A”:“new_A”,“B”:“new_B”},axis='columns',inplace=True)#用'new_A'重命名列A,用'new_B'重命名列B输出:新a新b0 1 41 2 52 3 6使用映射重命名索引/Row_Name:df.reame({0:“x”,1:“y”,2:“z”},axis='index',inplace=True)#行名称被'x'、'y'和'z'替换。输出:新a新bx 142015年z 3 6