我想从

['$a', '$b', '$c', '$d', '$e']

to

['a', 'b', 'c', 'd', 'e']

当前回答

这里有一个我喜欢用来减少打字的漂亮小函数:

def rename(data, oldnames, newname):
    if type(oldnames) == str: # Input can be a string or list of strings
        oldnames = [oldnames] # When renaming multiple columns
        newname = [newname] # Make sure you pass the corresponding list of new names
    i = 0
    for name in oldnames:
        oldvar = [c for c in data.columns if name in c]
        if len(oldvar) == 0:
            raise ValueError("Sorry, couldn't find that column in the dataset")
        if len(oldvar) > 1: # Doesn't have to be an exact match
            print("Found multiple columns that matched " + str(name) + ": ")
            for c in oldvar:
                print(str(oldvar.index(c)) + ": " + str(c))
            ind = input('Please enter the index of the column you would like to rename: ')
            oldvar = oldvar[int(ind)]
        if len(oldvar) == 1:
            oldvar = oldvar[0]
        data = data.rename(columns = {oldvar : newname[i]})
        i += 1
    return data

下面是一个如何工作的示例:

In [2]: df = pd.DataFrame(np.random.randint(0, 10, size=(10, 4)), columns = ['col1', 'col2', 'omg', 'idk'])
# First list = existing variables
# Second list = new names for those variables
In [3]: df = rename(df, ['col', 'omg'],['first', 'ohmy'])
Found multiple columns that matched col:
0: col1
1: col2

Please enter the index of the column you would like to rename: 0

In [4]: df.columns
Out[5]: Index(['first', 'col2', 'ohmy', 'idk'], dtype='object')

其他回答

如果您只想删除“$”符号,请使用以下代码

df.columns = pd.Series(df.columns.str.replace("$", ""))

我的单线回答是

df.columns=df_new_cols

它是最好的,处理时间为1/3。

timeit比较:

df有七列。我正在尝试更改一些名称。

%timeit df.rename(columns={old_col:new_col for (old_col,new_col) in zip(df_old_cols,df_new_cols)},inplace=True)
214 µs ± 10.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

%timeit df.rename(columns=dict(zip(df_old_cols,df_new_cols)),inplace=True)
212 µs ± 7.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

%timeit df.columns = df_new_cols
72.9 µs ± 17.2 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

由于您只想删除所有列名中的$符号,因此只需执行以下操作:

df = df.rename(columns=lambda x: x.replace('$', ''))

OR

df.rename(columns=lambda x: x.replace('$', ''), inplace=True)

让我们通过一个小例子来理解重命名。。。

使用映射重命名列:df=pd.DataFrame({“A”:[1,2,3],“B”:[4,5,6]})#创建列名为A和B的dfdf.reame({“A”:“new_A”,“B”:“new_B”},axis='columns',inplace=True)#用'new_A'重命名列A,用'new_B'重命名列B输出:新a新b0 1 41 2 52 3 6使用映射重命名索引/Row_Name:df.reame({0:“x”,1:“y”,2:“z”},axis='index',inplace=True)#行名称被'x'、'y'和'z'替换。输出:新a新bx 142015年z 3 6

只需将其分配给.columns属性:

>>> df = pd.DataFrame({'$a':[1,2], '$b': [10,20]})
>>> df
   $a  $b
0   1  10
1   2  20

>>> df.columns = ['a', 'b']
>>> df
   a   b
0  1  10
1  2  20