我想找出我的数据的每一列中NaN的数量。


当前回答

根据投票最多的答案,我们可以很容易地定义一个函数,给我们一个数据框架来预览每一列中缺失的值和缺失值的百分比:

def missing_values_table(df):
    mis_val = df.isnull().sum()
    mis_val_percent = 100 * df.isnull().sum() / len(df)
    mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1)
    mis_val_table_ren_columns = mis_val_table.rename(
    columns = {0 : 'Missing Values', 1 : '% of Total Values'})
    mis_val_table_ren_columns = mis_val_table_ren_columns[
        mis_val_table_ren_columns.iloc[:,1] != 0].sort_values(
    '% of Total Values', ascending=False).round(1)
    print ("Your selected dataframe has " + str(df.shape[1]) + " columns.\n"      
        "There are " + str(mis_val_table_ren_columns.shape[0]) +
            " columns that have missing values.")
    return mis_val_table_ren_columns

其他回答

可以使用df.iteritems()对数据帧进行循环。在for循环中设置一个条件来计算每列的NaN值百分比,并删除那些包含NaN值超过设置阈值的值:

for col, val in df.iteritems():
    if (df[col].isnull().sum() / len(val) * 100) > 30:
        df.drop(columns=col, inplace=True)

使用isna()方法(或者它的别名isnull(),这也兼容较旧的pandas版本< 0.21.0),然后求和来计算NaN值。其中一列:

>>> s = pd.Series([1,2,3, np.nan, np.nan])

>>> s.isna().sum()   # or s.isnull().sum() for older pandas versions
2

对于一些列,这也适用:

>>> df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})

>>> df.isna().sum()
a    1
b    2
dtype: int64

你可以使用value_counts方法打印np.nan的值

s.value_counts(dropna = False)[np.nan]

我写了一个简短的函数(Python 3)来生成.info作为pandas数据框架,然后可以写入excel:

df1 = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]}) 
def info_as_df (df):
    null_counts = df.isna().sum()
    info_df = pd.DataFrame(list(zip(null_counts.index,null_counts.values))\
                                         , columns = ['Column', 'Nulls_Count'])
    data_types = df.dtypes
    info_df['Dtype'] = data_types.values
    return info_df
print(df1.info())
print(info_as_df(df1))

这使:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 2 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   a       2 non-null      float64
 1   b       1 non-null      float64
dtypes: float64(2)
memory usage: 176.0 bytes
None
  Column  Nulls_Count    Dtype
0      a            1  float64
1      b            2  float64

数零:

df[df == 0].count(axis=0)

计算NaN:

df.isnull().sum()

or

df.isna().sum()