我想找出我的数据的每一列中NaN的数量。
当前回答
你可以使用value_counts方法打印np.nan的值
s.value_counts(dropna = False)[np.nan]
其他回答
自从pandas 0.14.1以来,我的建议在value_counts方法中有一个关键字参数已经实现:
import pandas as pd
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
for col in df:
print df[col].value_counts(dropna=False)
2 1
1 1
NaN 1
dtype: int64
NaN 2
1 1
dtype: int64
对于第一部分,我们有多种方法计算NaN。
方法1计数,由于计数将忽略与大小不同的NaN
print(len(df) - df.count())
方法2:isnull / isna chain with sum
print(df.isnull().sum())
#print(df.isna().sum())
方法3 describe / info:注意这将输出' notull '值计数
print(df.describe())
#print(df.info())
方法。
print(np.count_nonzero(np.isnan(df.values),axis=0))
对于问题的第二部分,如果我们想要在thresh中删除列,我们可以尝试dropna
thresh, optional要求多个非na值。
Thresh = n # no null value require, you can also get the by int(x% * len(df))
df = df.dropna(thresh = Thresh, axis = 1)
如果你正在使用Jupyter笔记本,如何....
%%timeit
df.isnull().any().any()
or
%timeit
df.isnull().values.sum()
或者,数据中是否存在nan,如果有,在哪里?
df.isnull().any()
我写了一个简短的函数(Python 3)来生成.info作为pandas数据框架,然后可以写入excel:
df1 = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
def info_as_df (df):
null_counts = df.isna().sum()
info_df = pd.DataFrame(list(zip(null_counts.index,null_counts.values))\
, columns = ['Column', 'Nulls_Count'])
data_types = df.dtypes
info_df['Dtype'] = data_types.values
return info_df
print(df1.info())
print(info_as_df(df1))
这使:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 a 2 non-null float64
1 b 1 non-null float64
dtypes: float64(2)
memory usage: 176.0 bytes
None
Column Nulls_Count Dtype
0 a 1 float64
1 b 2 float64
根据投票最多的答案,我们可以很容易地定义一个函数,给我们一个数据框架来预览每一列中缺失的值和缺失值的百分比:
def missing_values_table(df):
mis_val = df.isnull().sum()
mis_val_percent = 100 * df.isnull().sum() / len(df)
mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1)
mis_val_table_ren_columns = mis_val_table.rename(
columns = {0 : 'Missing Values', 1 : '% of Total Values'})
mis_val_table_ren_columns = mis_val_table_ren_columns[
mis_val_table_ren_columns.iloc[:,1] != 0].sort_values(
'% of Total Values', ascending=False).round(1)
print ("Your selected dataframe has " + str(df.shape[1]) + " columns.\n"
"There are " + str(mis_val_table_ren_columns.shape[0]) +
" columns that have missing values.")
return mis_val_table_ren_columns
推荐文章
- 即使模板文件存在,Flask也会引发TemplateNotFound错误
- defaultdict的嵌套defaultdict
- 构造tkinter应用程序的最佳方法?
- 如何在Python中逐行打印字典?
- 当试图运行Python脚本时,“ImportError:没有命名模块”
- pylab和pyplot的区别是什么?
- Argparse:确定使用了哪个子解析器
- django导入错误-没有core.management模块
- 在芹菜中检索队列中的任务列表
- 使用beautifulsoup提取属性值
- 如何禁用标准错误流的日志记录?
- 用Matplotlib在Python中绘制时间
- 类中的Python装饰器
- 在Python中锁定文件
- 得到熊猫栏目的总数