我想找出我的数据的每一列中NaN的数量。


当前回答

你可以使用value_counts方法打印np.nan的值

s.value_counts(dropna = False)[np.nan]

其他回答

import pandas as pd
import numpy as np

# example DataFrame
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})

# count the NaNs in a column
num_nan_a = df.loc[ (pd.isna(df['a'])) , 'a' ].shape[0]
num_nan_b = df.loc[ (pd.isna(df['b'])) , 'b' ].shape[0]

# summarize the num_nan_b
print(df)
print(' ')
print(f"There are {num_nan_a} NaNs in column a")
print(f"There are {num_nan_b} NaNs in column b")

给出输出:

     a    b
0  1.0  NaN
1  2.0  1.0
2  NaN  NaN

There are 1 NaNs in column a
There are 2 NaNs in column b

如果只是在pandas列中计算nan值,这里是一个快速的方法

import pandas as pd
## df1 as an example data frame 
## col1 name of column for which you want to calculate the nan values
sum(pd.isnull(df1['col1']))

你可以使用value_counts方法打印np.nan的值

s.value_counts(dropna = False)[np.nan]

我使用这个循环来计算每一列的缺失值:

# check missing values
import numpy as np, pandas as pd
for col in df:
      print(col +': '+ np.str(df[col].isna().sum()))

如果你需要得到非NA (non-None)和NA (None)计数在不同的组拉出groupby:

gdf = df.groupby(['ColumnToGroupBy'])

def countna(x):
    return (x.isna()).sum()

gdf.agg(['count', countna, 'size'])

这将返回每个组的非NA、NA和总条目数。