我想找出我的数据的每一列中NaN的数量。
当前回答
如果你需要得到非NA (non-None)和NA (None)计数在不同的组拉出groupby:
gdf = df.groupby(['ColumnToGroupBy'])
def countna(x):
return (x.isna()).sum()
gdf.agg(['count', countna, 'size'])
这将返回每个组的非NA、NA和总条目数。
其他回答
数零:
df[df == 0].count(axis=0)
计算NaN:
df.isnull().sum()
or
df.isna().sum()
下面是按列计数Null值的代码:
df.isna().sum()
可以使用df.iteritems()对数据帧进行循环。在for循环中设置一个条件来计算每列的NaN值百分比,并删除那些包含NaN值超过设置阈值的值:
for col, val in df.iteritems():
if (df[col].isnull().sum() / len(val) * 100) > 30:
df.drop(columns=col, inplace=True)
你可以从非nan值的计数中减去总长度:
count_nan = len(df) - df.count()
你应该根据你的数据计算时间。与isnull解相比,小级数的速度提高了3倍。
我写了一个简短的函数(Python 3)来生成.info作为pandas数据框架,然后可以写入excel:
df1 = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
def info_as_df (df):
null_counts = df.isna().sum()
info_df = pd.DataFrame(list(zip(null_counts.index,null_counts.values))\
, columns = ['Column', 'Nulls_Count'])
data_types = df.dtypes
info_df['Dtype'] = data_types.values
return info_df
print(df1.info())
print(info_as_df(df1))
这使:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 a 2 non-null float64
1 b 1 non-null float64
dtypes: float64(2)
memory usage: 176.0 bytes
None
Column Nulls_Count Dtype
0 a 1 float64
1 b 2 float64
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 确定每列中NA值的个数
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 如何结合多个条件子集数据帧使用“或”?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式