我想找出我的数据的每一列中NaN的数量。


当前回答

请使用以下方法计算特定的列数

dataframe.columnName.isnull().sum()

其他回答

2017年7月,Dzone有一篇不错的文章,详细介绍了总结NaN值的各种方法。点击这里查看。

我所引用的文章提供了额外的价值:(1)展示了一种方法来计算和显示每列的NaN计数,以便人们可以轻松地决定是否丢弃这些列;(2)演示了一种方法来选择那些特定的具有NaN的行,以便它们可以选择性地丢弃或估算。

这里有一个快速的例子来演示这种方法的实用性——只有几个列,也许它的有用性不明显,但我发现它对较大的数据框架很有帮助。

import pandas as pd
import numpy as np

# example DataFrame
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})

# Check whether there are null values in columns
null_columns = df.columns[df.isnull().any()]
print(df[null_columns].isnull().sum())

# One can follow along further per the cited article

可以使用df.iteritems()对数据帧进行循环。在for循环中设置一个条件来计算每列的NaN值百分比,并删除那些包含NaN值超过设置阈值的值:

for col, val in df.iteritems():
    if (df[col].isnull().sum() / len(val) * 100) > 30:
        df.drop(columns=col, inplace=True)

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.count.html#pandas.Series.count

pandas.Series.count
Series.count(level=None)[source]

返回系列中非na /null观测值的个数

自从pandas 0.14.1以来,我的建议在value_counts方法中有一个关键字参数已经实现:

import pandas as pd
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
for col in df:
    print df[col].value_counts(dropna=False)

2     1
 1     1
NaN    1
dtype: int64
NaN    2
 1     1
dtype: int64

使用isna()方法(或者它的别名isnull(),这也兼容较旧的pandas版本< 0.21.0),然后求和来计算NaN值。其中一列:

>>> s = pd.Series([1,2,3, np.nan, np.nan])

>>> s.isna().sum()   # or s.isnull().sum() for older pandas versions
2

对于一些列,这也适用:

>>> df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})

>>> df.isna().sum()
a    1
b    2
dtype: int64