我想找出我的数据的每一列中NaN的数量。
当前回答
使用isna()方法(或者它的别名isnull(),这也兼容较旧的pandas版本< 0.21.0),然后求和来计算NaN值。其中一列:
>>> s = pd.Series([1,2,3, np.nan, np.nan])
>>> s.isna().sum() # or s.isnull().sum() for older pandas versions
2
对于一些列,这也适用:
>>> df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
>>> df.isna().sum()
a 1
b 2
dtype: int64
其他回答
你可以从非nan值的计数中减去总长度:
count_nan = len(df) - df.count()
你应该根据你的数据计算时间。与isnull解相比,小级数的速度提高了3倍。
让我们假设df是一个熊猫数据框架。
然后,
df.isnull().sum(axis = 0)
这将给出每列中NaN值的数量。
如果你需要,每一行的NaN值,
df.isnull().sum(axis = 1)
希望这能有所帮助,
import pandas as pd
import numpy as np
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan],'c':[np.nan,2,np.nan], 'd':[np.nan,np.nan,np.nan]})
df.isnull().sum()/len(df) * 100
Thres = 40
(df.isnull().sum()/len(df) * 100 ) < Thres
下面的代码将按降序打印所有Nan列。
df.isnull().sum().sort_values(ascending = False)
or
下面将按降序打印前15个Nan列。
df.isnull().sum().sort_values(ascending = False).head(15)
你可以使用value_counts方法打印np.nan的值
s.value_counts(dropna = False)[np.nan]
推荐文章
- 即使模板文件存在,Flask也会引发TemplateNotFound错误
- defaultdict的嵌套defaultdict
- 构造tkinter应用程序的最佳方法?
- 如何在Python中逐行打印字典?
- 当试图运行Python脚本时,“ImportError:没有命名模块”
- pylab和pyplot的区别是什么?
- Argparse:确定使用了哪个子解析器
- django导入错误-没有core.management模块
- 在芹菜中检索队列中的任务列表
- 使用beautifulsoup提取属性值
- 如何禁用标准错误流的日志记录?
- 用Matplotlib在Python中绘制时间
- 类中的Python装饰器
- 在Python中锁定文件
- 得到熊猫栏目的总数