我想找出我的数据的每一列中NaN的数量。


当前回答

假设您希望获得一个名为reviews的数据框架中称为price的列(系列)中缺失值(NaN)的数量

#import the dataframe
import pandas as pd

reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0)

用n_missing_prices作为变量来获取缺失的值,简单地做

n_missing_prices = sum(reviews.price.isnull())
print(n_missing_prices)

Sum是这里的关键方法,在我意识到Sum是在这种情况下使用的正确方法之前,我试图使用count

其他回答

你可以试试:

In [1]: s = pd.DataFrame('a'=[1,2,5, np.nan, np.nan,3],'b'=[1,3, np.nan, np.nan,3,np.nan])

In [4]: s.isna().sum()   
Out[4]: out = {'a'=2, 'b'=3} # the number of NaN values for each column

如果需要nan的总和:

In [5]: s.isna().sum().sum()
Out[6]: out = 5  #the inline sum of Out[4] 

对于你的任务,你可以使用pandas.DataFrame.dropna (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html):

import pandas as pd
import numpy as np

df = pd.DataFrame({'a': [1, 2, 3, 4, np.nan],
                   'b': [1, 2, np.nan, 4, np.nan],
                   'c': [np.nan, 2, np.nan, 4, np.nan]})
df = df.dropna(axis='columns', thresh=3)

print(df)

使用thresh参数,您可以声明DataFrame中所有列的NaN值的最大计数。

代码输出:

     a    b
0  1.0  1.0
1  2.0  2.0
2  3.0  NaN
3  4.0  4.0
4  NaN  NaN

你可以从非nan值的计数中减去总长度:

count_nan = len(df) - df.count()

你应该根据你的数据计算时间。与isnull解相比,小级数的速度提高了3倍。

下面的代码将按降序打印所有Nan列。

df.isnull().sum().sort_values(ascending = False)

or

下面将按降序打印前15个Nan列。

df.isnull().sum().sort_values(ascending = False).head(15)

2017年7月,Dzone有一篇不错的文章,详细介绍了总结NaN值的各种方法。点击这里查看。

我所引用的文章提供了额外的价值:(1)展示了一种方法来计算和显示每列的NaN计数,以便人们可以轻松地决定是否丢弃这些列;(2)演示了一种方法来选择那些特定的具有NaN的行,以便它们可以选择性地丢弃或估算。

这里有一个快速的例子来演示这种方法的实用性——只有几个列,也许它的有用性不明显,但我发现它对较大的数据框架很有帮助。

import pandas as pd
import numpy as np

# example DataFrame
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})

# Check whether there are null values in columns
null_columns = df.columns[df.isnull().any()]
print(df[null_columns].isnull().sum())

# One can follow along further per the cited article