我想找出我的数据的每一列中NaN的数量。
当前回答
df.isnull().sum()
//type: <class 'pandas.core.series.Series'>
or
df.column_name.isnull().sum()
//type: <type 'numpy.int64'>
其他回答
df1.isnull().sum()
这样就可以了。
假设您希望获得一个名为reviews的数据框架中称为price的列(系列)中缺失值(NaN)的数量
#import the dataframe
import pandas as pd
reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0)
用n_missing_prices作为变量来获取缺失的值,简单地做
n_missing_prices = sum(reviews.price.isnull())
print(n_missing_prices)
Sum是这里的关键方法,在我意识到Sum是在这种情况下使用的正确方法之前,我试图使用count
对于第一部分,我们有多种方法计算NaN。
方法1计数,由于计数将忽略与大小不同的NaN
print(len(df) - df.count())
方法2:isnull / isna chain with sum
print(df.isnull().sum())
#print(df.isna().sum())
方法3 describe / info:注意这将输出' notull '值计数
print(df.describe())
#print(df.info())
方法。
print(np.count_nonzero(np.isnan(df.values),axis=0))
对于问题的第二部分,如果我们想要在thresh中删除列,我们可以尝试dropna
thresh, optional要求多个非na值。
Thresh = n # no null value require, you can also get the by int(x% * len(df))
df = df.dropna(thresh = Thresh, axis = 1)
根据投票最多的答案,我们可以很容易地定义一个函数,给我们一个数据框架来预览每一列中缺失的值和缺失值的百分比:
def missing_values_table(df):
mis_val = df.isnull().sum()
mis_val_percent = 100 * df.isnull().sum() / len(df)
mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1)
mis_val_table_ren_columns = mis_val_table.rename(
columns = {0 : 'Missing Values', 1 : '% of Total Values'})
mis_val_table_ren_columns = mis_val_table_ren_columns[
mis_val_table_ren_columns.iloc[:,1] != 0].sort_values(
'% of Total Values', ascending=False).round(1)
print ("Your selected dataframe has " + str(df.shape[1]) + " columns.\n"
"There are " + str(mis_val_table_ren_columns.shape[0]) +
" columns that have missing values.")
return mis_val_table_ren_columns
下面的代码将按降序打印所有Nan列。
df.isnull().sum().sort_values(ascending = False)
or
下面将按降序打印前15个Nan列。
df.isnull().sum().sort_values(ascending = False).head(15)
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 确定每列中NA值的个数
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 如何结合多个条件子集数据帧使用“或”?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式