我想找出我的数据的每一列中NaN的数量。
当前回答
可以使用df.iteritems()对数据帧进行循环。在for循环中设置一个条件来计算每列的NaN值百分比,并删除那些包含NaN值超过设置阈值的值:
for col, val in df.iteritems():
if (df[col].isnull().sum() / len(val) * 100) > 30:
df.drop(columns=col, inplace=True)
其他回答
让我们假设df是一个熊猫数据框架。
然后,
df.isnull().sum(axis = 0)
这将给出每列中NaN值的数量。
如果你需要,每一行的NaN值,
df.isnull().sum(axis = 1)
df1.isnull().sum()
这样就可以了。
如果你需要得到非NA (non-None)和NA (None)计数在不同的组拉出groupby:
gdf = df.groupby(['ColumnToGroupBy'])
def countna(x):
return (x.isna()).sum()
gdf.agg(['count', countna, 'size'])
这将返回每个组的非NA、NA和总条目数。
我使用这个循环来计算每一列的缺失值:
# check missing values
import numpy as np, pandas as pd
for col in df:
print(col +': '+ np.str(df[col].isna().sum()))
下面是按列计数Null值的代码:
df.isna().sum()
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 确定每列中NA值的个数
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 如何结合多个条件子集数据帧使用“或”?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式