我想找出我的数据的每一列中NaN的数量。


当前回答

可以使用df.iteritems()对数据帧进行循环。在for循环中设置一个条件来计算每列的NaN值百分比,并删除那些包含NaN值超过设置阈值的值:

for col, val in df.iteritems():
    if (df[col].isnull().sum() / len(val) * 100) > 30:
        df.drop(columns=col, inplace=True)

其他回答

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.count.html#pandas.Series.count

pandas.Series.count
Series.count(level=None)[source]

返回系列中非na /null观测值的个数

自从pandas 0.14.1以来,我的建议在value_counts方法中有一个关键字参数已经实现:

import pandas as pd
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
for col in df:
    print df[col].value_counts(dropna=False)

2     1
 1     1
NaN    1
dtype: int64
NaN    2
 1     1
dtype: int64

如果你需要得到非NA (non-None)和NA (None)计数在不同的组拉出groupby:

gdf = df.groupby(['ColumnToGroupBy'])

def countna(x):
    return (x.isna()).sum()

gdf.agg(['count', countna, 'size'])

这将返回每个组的非NA、NA和总条目数。

另一种完整的方法是使用np。带有.isna()的count_non0:

np.count_nonzero(df.isna())

%timeit np.count_nonzero(df.isna())
512 ms ± 24.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

使用1000005行× 16列的数据框架与顶部答案进行比较:

%timeit df.isna().sum()
492 ms ± 55.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit df.isnull().sum(axis = 0)
478 ms ± 34.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit count_nan = len(df) - df.count()
484 ms ± 47.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

数据:

raw_data = {'first_name': ['Jason', np.nan, 'Tina', 'Jake', 'Amy'], 
        'last_name': ['Miller', np.nan, np.nan, 'Milner', 'Cooze'], 
        'age': [22, np.nan, 23, 24, 25], 
        'sex': ['m', np.nan, 'f', 'm', 'f'], 
        'Test1_Score': [4, np.nan, 0, 0, 0],
        'Test2_Score': [25, np.nan, np.nan, 0, 0]}
results = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'age', 'sex', 'Test1_Score', 'Test2_Score'])

# big dataframe for %timeit 
big_df = pd.DataFrame(np.random.randint(0, 100, size=(1000000, 10)), columns=list('ABCDEFGHIJ'))
df = pd.concat([big_df,results]) # 1000005 rows × 16 columns

使用isna()方法(或者它的别名isnull(),这也兼容较旧的pandas版本< 0.21.0),然后求和来计算NaN值。其中一列:

>>> s = pd.Series([1,2,3, np.nan, np.nan])

>>> s.isna().sum()   # or s.isnull().sum() for older pandas versions
2

对于一些列,这也适用:

>>> df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})

>>> df.isna().sum()
a    1
b    2
dtype: int64