我想找出我的数据的每一列中NaN的数量。


当前回答

import pandas as pd
import numpy as np

# example DataFrame
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})

# count the NaNs in a column
num_nan_a = df.loc[ (pd.isna(df['a'])) , 'a' ].shape[0]
num_nan_b = df.loc[ (pd.isna(df['b'])) , 'b' ].shape[0]

# summarize the num_nan_b
print(df)
print(' ')
print(f"There are {num_nan_a} NaNs in column a")
print(f"There are {num_nan_b} NaNs in column b")

给出输出:

     a    b
0  1.0  NaN
1  2.0  1.0
2  NaN  NaN

There are 1 NaNs in column a
There are 2 NaNs in column b

其他回答

另一个尚未被建议的简单选项是,为了只计算NaN,将在形状中添加以返回具有NaN的行数。

df[df['col_name'].isnull()]['col_name'].shape

下面是按列计数Null值的代码:

df.isna().sum()

根据给出的答案和一些改进,这是我的方法

def PercentageMissin(Dataset):
    """this function will return the percentage of missing values in a dataset """
    if isinstance(Dataset,pd.DataFrame):
        adict={} #a dictionary conatin keys columns names and values percentage of missin value in the columns
        for col in Dataset.columns:
            adict[col]=(np.count_nonzero(Dataset[col].isnull())*100)/len(Dataset[col])
        return pd.DataFrame(adict,index=['% of missing'],columns=adict.keys())
    else:
        raise TypeError("can only be used with panda dataframe")

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.count.html#pandas.Series.count

pandas.Series.count
Series.count(level=None)[source]

返回系列中非na /null观测值的个数

你可以从非nan值的计数中减去总长度:

count_nan = len(df) - df.count()

你应该根据你的数据计算时间。与isnull解相比,小级数的速度提高了3倍。