我想找出我的数据的每一列中NaN的数量。
当前回答
import pandas as pd
import numpy as np
# example DataFrame
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
# count the NaNs in a column
num_nan_a = df.loc[ (pd.isna(df['a'])) , 'a' ].shape[0]
num_nan_b = df.loc[ (pd.isna(df['b'])) , 'b' ].shape[0]
# summarize the num_nan_b
print(df)
print(' ')
print(f"There are {num_nan_a} NaNs in column a")
print(f"There are {num_nan_b} NaNs in column b")
给出输出:
a b
0 1.0 NaN
1 2.0 1.0
2 NaN NaN
There are 1 NaNs in column a
There are 2 NaNs in column b
其他回答
对于第一部分,我们有多种方法计算NaN。
方法1计数,由于计数将忽略与大小不同的NaN
print(len(df) - df.count())
方法2:isnull / isna chain with sum
print(df.isnull().sum())
#print(df.isna().sum())
方法3 describe / info:注意这将输出' notull '值计数
print(df.describe())
#print(df.info())
方法。
print(np.count_nonzero(np.isnan(df.values),axis=0))
对于问题的第二部分,如果我们想要在thresh中删除列,我们可以尝试dropna
thresh, optional要求多个非na值。
Thresh = n # no null value require, you can also get the by int(x% * len(df))
df = df.dropna(thresh = Thresh, axis = 1)
2017年7月,Dzone有一篇不错的文章,详细介绍了总结NaN值的各种方法。点击这里查看。
我所引用的文章提供了额外的价值:(1)展示了一种方法来计算和显示每列的NaN计数,以便人们可以轻松地决定是否丢弃这些列;(2)演示了一种方法来选择那些特定的具有NaN的行,以便它们可以选择性地丢弃或估算。
这里有一个快速的例子来演示这种方法的实用性——只有几个列,也许它的有用性不明显,但我发现它对较大的数据框架很有帮助。
import pandas as pd
import numpy as np
# example DataFrame
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
# Check whether there are null values in columns
null_columns = df.columns[df.isnull().any()]
print(df[null_columns].isnull().sum())
# One can follow along further per the cited article
你可以从非nan值的计数中减去总长度:
count_nan = len(df) - df.count()
你应该根据你的数据计算时间。与isnull解相比,小级数的速度提高了3倍。
你可以试试:
In [1]: s = pd.DataFrame('a'=[1,2,5, np.nan, np.nan,3],'b'=[1,3, np.nan, np.nan,3,np.nan])
In [4]: s.isna().sum()
Out[4]: out = {'a'=2, 'b'=3} # the number of NaN values for each column
如果需要nan的总和:
In [5]: s.isna().sum().sum()
Out[6]: out = 5 #the inline sum of Out[4]
对于你的任务,你可以使用pandas.DataFrame.dropna (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html):
import pandas as pd
import numpy as np
df = pd.DataFrame({'a': [1, 2, 3, 4, np.nan],
'b': [1, 2, np.nan, 4, np.nan],
'c': [np.nan, 2, np.nan, 4, np.nan]})
df = df.dropna(axis='columns', thresh=3)
print(df)
使用thresh参数,您可以声明DataFrame中所有列的NaN值的最大计数。
代码输出:
a b
0 1.0 1.0
1 2.0 2.0
2 3.0 NaN
3 4.0 4.0
4 NaN NaN
推荐文章
- Python 3.7数据类中的类继承
- 如何在PyTorch中初始化权重?
- 计数唯一的值在一列熊猫数据框架像在Qlik?
- 使用Pandas将列转换为行
- 从matplotlib中的颜色映射中获取单个颜色
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异