我想找出我的数据的每一列中NaN的数量。


当前回答

自从pandas 0.14.1以来,我的建议在value_counts方法中有一个关键字参数已经实现:

import pandas as pd
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
for col in df:
    print df[col].value_counts(dropna=False)

2     1
 1     1
NaN    1
dtype: int64
NaN    2
 1     1
dtype: int64

其他回答

你可以试试:

In [1]: s = pd.DataFrame('a'=[1,2,5, np.nan, np.nan,3],'b'=[1,3, np.nan, np.nan,3,np.nan])

In [4]: s.isna().sum()   
Out[4]: out = {'a'=2, 'b'=3} # the number of NaN values for each column

如果需要nan的总和:

In [5]: s.isna().sum().sum()
Out[6]: out = 5  #the inline sum of Out[4] 

下面是按列计数Null值的代码:

df.isna().sum()

希望这能有所帮助,

import pandas as pd
import numpy as np
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan],'c':[np.nan,2,np.nan], 'd':[np.nan,np.nan,np.nan]})

df.isnull().sum()/len(df) * 100

Thres = 40
(df.isnull().sum()/len(df) * 100 ) < Thres

你可以从非nan值的计数中减去总长度:

count_nan = len(df) - df.count()

你应该根据你的数据计算时间。与isnull解相比,小级数的速度提高了3倍。

如果你正在使用Jupyter笔记本,如何....

 %%timeit
 df.isnull().any().any()

or

 %timeit 
 df.isnull().values.sum()

或者,数据中是否存在nan,如果有,在哪里?

 df.isnull().any()